Christophe Badie

Learn More
We have studied the intrinsic radiosensitivity, repair of potentially lethal damage (PLD) and the repair rate of radiation-induced DNA double-strand breaks (DSB) in 11 non-transformed human fibroblast cell lines, four of which were homozygous for the A-T mutation and two that were heterozygous (A-TH). All the experiments were done on cells in plateau phase(More)
Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in(More)
PURPOSE To establish a panel of highly radiation responsive genes suitable for biological dosimetry and to explore inter-individual variation in response to ionising radiation exposure. MATERIALS AND METHODS Analysis of gene expression in response to radiation was carried out using three independent techniques (Microarray, Multiplex Quantitative Real-Time(More)
A review of reports dealing with fittings of the data for repair of DNA double-strand breaks (DSBs) and excess chromosome fragments (ECFs) shows that several models are used to fit the repair curves. Since DSBs and ECFs are correlated, it is worth developing a model describing both phenomena. The curve-fitting models used most extensively, the two repair(More)
Genetic factors are likely to affect individual cancer risk, but few quantitative estimates of heritability are available. Public health radiation protection policies do not in general take this potentially important source of variation in risk into account. Two surrogate cellular assays that relate to cancer susceptibility have been developed to gain an(More)
Entry into mitosis is controlled by the cyclin-dependent kinase CDK1 and can be delayed in response to DNA damage. In some systems, such G(2)/M arrest has been shown to reflect the stabilization of inhibitory phosphorylation sites on CDK1. In human cells, full G(2) arrest appears to involve additional mechanisms. We describe here the prolonged (>6 day)(More)
The aim of this work was to measure simultaneously and in a quantitative manner double-strand breaks (DSBs), interphase chromosome breaks and cell lethality either immediately after irradiation, or at various times thereafter (up to 24 h), in cells of three nontransformed human fibroblast cell lines of widely different intrinsic radiosensitivity. We wished(More)
Normal tissue reactions to radiation therapy vary in severity among patients and cannot be accurately predicted, limiting treatment doses. The existence of heritable radiosensitivity syndromes suggests that normal tissue reaction severity is determined, at least in part, by genetic factors and these may be revealed by differences in gene expression. To test(More)
Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. We have previously shown that the MCF7 resistance to the cytotoxic action of TNF correlates with p53 mutations. In the present study, we used a recombinant adenovirus carrying a wild-type p53 gene (Adwtp53) in order to investigate the effect of(More)
PURPOSE To examine the hypothesis that lymphocyte telomere length may be predictive of both breast cancer susceptibility and severity of acute reactions to radiotherapy. MATERIALS AND METHODS Peripheral blood lymphocyte cultures from breast cancer patients (with normal or severe skin reactions to radiotherapy) and normal individuals were assessed for in(More)