Learn More
Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by(More)
BACKGROUND One of the most fascinating properties of the biotechnologically important organism Saccharomyces cerevisiae is its ability to perform simultaneous respiration and fermentation at high growth rate even under fully aerobic conditions. In the present work, this Crabtree effect called phenomenon was investigated in detail by comparative 13C(More)
BACKGROUND The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on 13C substrates, (ii) 13C labelling analysis by mass spectrometry and(More)
Strains belonging to the yeast species Kluyveromyces marxianus have been isolated from a great variety of habitats, which results in a high metabolic diversity and a substantial degree of intraspecific polymorphism. As a consequence, several different biotechnological applications have been investigated with this yeast: production of enzymes(More)
Since their discovery almost 60 years ago, Corynebacterium glutamicum and related subspecies are writing a remarkable success story in industrial biotechnology. Today, these gram-positive soil bacteria, traditionally well-known as excellent producers of L-amino acids are becoming flexible, efficient production platforms for various chemicals, materials and(More)
In the present work we investigated the most commonly applied methods used for sampling of microorganisms in the field of metabolomics in order to unravel potential sources of error previously ignored but of utmost importance for accurate metabolome analysis. To broaden the significance of our study, we investigated different Gram-negative and Gram-positive(More)
In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine(More)
References Abstract l-lysine is an essential amino acid required for nutrition of animals and humans. It has to be present in food and feed, which, in many cases, is realized by supplementation of the feed-stuffs with pure lysine. The high importance of lysine in nutrition has stimulated intensive research on the lysine biosynthetic pathways and their(More)
BACKGROUND The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is(More)
The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the(More)