Learn More
All-trans retinoic acid (RA) has previously been shown to modulate the transcriptional properties of the retinoic acid receptor (RAR) and retinoid X receptor (RXR). The inability of all-trans RA to bind to RXR suggests that it may be metabolized to a more active high affinity ligand. We report here an experimental approach that has identified 9-cis RA as an(More)
It has long been suggested that the generation of biological patterns depends in part on gradients of diffusible substances. In an attempt to bridge the gap between this largely theoretical concept and experimental embryology, we have examined the physiology of diffusion gradients in an actual embryonic field. In particular, we have generated in the chick(More)
All-trans-retinoic acid (RA) induces striking digit pattern duplications when locally applied to the developing chick limb bud. Instead of the normal digit pattern (234) a mirror-symmetrical 432234 pattern can be specified. Hence, RA closely mimics posterior limb bud tissue (the zone of polarizing activity, ZPA) that causes very similar duplications when(More)
Hensen's node of amniotes, like the Spemann organizer of amphibians, can induce a second body axis when grafted into a host embryo. The avian node, as well as several midline structures originating from it (notochord, floor plate), can also induce digit pattern duplications when grafted into the chick wing bud. We report here that the equivalent of Hensen's(More)
Both retinoid receptor null mutants and classic nutritional deficiency studies have demonstrated that retinoids are essential for the normal development of diverse embryonic structures (e.g. eye, heart, nervous system, urogenital tract). Detailed analysis of retinoid-modulated events is hampered by several limitations of these models, including that(More)
In many developing organisms the establishment of axial polarity and the patterning of cells depend on local signals that derive from restricted regions of the embryo. In vertebrate embryos, the origins of tissue polarity have been examined extensively in the developing limb. The anteroposterior pattern of the chick limb seems to be controlled by a(More)
Retinoids (vitamin A derivatives) have been shown to have striking effects on developing and regenerating vertebrate limbs. In the developing chick limb, retinoic acid is a candidate morphogen that may coordinate the pattern of cellular differentiation along the anteroposterior limb axis. We describe a series of investigations of the metabolic pathway of(More)
There is increasing evidence that retinoic acid is a morphogen involved in vertebrate development. This evidence comes in part from studies of the chick wing bud, in which local application of all-trans-retinoic acid results in a duplication of the digit pattern along the anteroposterior axis. Retinoic acid may be only one of several morphogenetic(More)
A spatio-temporal map of gene activity in the brain would be an important contribution to the understanding of brain development, disease, and function. Such a resource is now possible using high-throughput in situ hybridization, a method for transcriptome-wide acquisition of cellular resolution gene expression patterns in serial tissue sections. However,(More)
  • 1