Christoph Studer

Learn More
Multiple-input multiple-output (MIMO) detection algorithms providing soft information for a subsequent channel decoder pose significant implementation challenges due to their high computational complexity. In this paper, we show how sphere decoding can be used as an efficient tool to implement soft-output MIMO detection with flexible trade-offs between(More)
Soft-input soft-output (SISO) detection algorithms form the basis for iterative decoding. The computational complexity of SISO detection often poses significant challenges for practical receiver implementations, in particular in the context of multiple-input multiple-output (MIMO) wireless communication systems. In this paper, we present a low-complexity(More)
Physical transceiver implementations for multipleinput multiple-output (MIMO) wireless communication systems suffer from transmit-RF (Tx-RF) impairments. In this paper, we study the effect on channel capacity and error-rate performance of residual Tx-RF impairments that defy proper compensation. In particular, we demonstrate that such residual distortions(More)
Multiple-input multiple-output (MIMO) technology is the key to meet the demands for data rate and link reliability of modern wireless communication systems, such as IEEE 802.11n or 3GPP-LTE. The full potential of MIMO systems can, however, only be achieved by means iterative MIMO decoding relying on soft-input soft-output (SISO) data detection. In this(More)
Large-scale (or massive) multiple-input multiple-out put (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose-to the best of our knowledge-the first VLSI design enabling high-throughput data detection in single-carrier(More)
We investigate an orthogonal frequency-division multiplexing (OFDM)-based downlink transmission scheme for large-scale multi-user (MU) multiple-input multiple-output (MIMO) wireless systems. The use of OFDM causes a high peakto-average (power) ratio (PAR), which necessitates expensive and power-inefficient radio-frequency (RF) components at the base(More)
This paper develops new theory and algorithms to recover signals that are approximately sparse in some general (i.e., basis, frame, over-complete, or incomplete) dictionary but corrupted by a combination of measurement noise and interference having a sparse representation in a second general dictionary. Particular applications covered by our framework(More)
Turbo-decoding for the 3GPP-LTE (Long Term Evolution) wireless communication standard is among the most challenging tasks in terms of computational complexity and power consumption of corresponding cellular devices. This paper addresses design and implementation aspects of parallel turbodecoders that reach the 326.4 Mb/s LTE peak data-rate using multiple(More)
We describe the VLSI implementation of MIMO detectors that exhibit close-to optimum error-rate performance, but still achieve high throughput at low silicon area. In particular, algorithms and VLSI architectures for sphere decoding (SD) and K-best detection are considered, and the corresponding trade-offs between uncoded error-rate performance, silicon(More)
We investigate the recovery of signals exhibiting a sparse representation in a general (i.e., possibly redundant or incomplete) dictionary that are corrupted by additive noise admitting a sparse representation in another general dictionary. This setup covers a wide range of applications, such as image inpainting, super-resolution, signal separation, and(More)