Christoph Strecha

Learn More
We propose to use binary strings as an efficient feature point descriptor, which we call BRIEF. We show that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests. Furthermore, the descriptor similarity can be evaluated using the Hamming distance, which is very efficient to compute,(More)
In this paper we want to start the discussion on whether image based 3D modelling techniques can possibly be used to replace LIDAR systems for outdoor 3D data acquisition. Two main issues have to be addressed in this context: (i) camera calibration (internal and external) and (ii) dense multi-view stereo. To investigate both, we have acquired test data from(More)
Binary descriptors are becoming increasingly popular as a means to compare feature points very fast while requiring comparatively small amounts of memory. The typical approach to creating them is to first compute floating-point ones, using an algorithm such as SIFT, and then to binarize them. In this paper, we show that we can directly compute a binary(More)
SIFT-like local feature descriptors are ubiquitously employed in computer vision applications such as content-based retrieval, video analysis, copy detection, object recognition, photo tourism, and 3D reconstruction. Feature descriptors can be designed to be invariant to certain classes of photometric and geometric transformations, in particular, affine and(More)
This paper describes a method for dense depth reconstruction from a small set of wide-baseline images. In a wide-baseline setting an inherent difficulty which complicates the stereo-correspondence problem is self-occlusion. Also, we have to consider the possibility that image pixels in different images, which are projections of the same point in the scene,(More)
In this paper, we present a generative model based approach to solve the multi-view stereo problem. The input images are considered to be generated by either one of two processes: (i) an inlier process, which generates the pixels which are visible from the reference camera and which obey the constant brightness assumption, and (ii) an outlier process which(More)
We present a new approach for large-scale multi-view stereo matching, which is designed to operate on ultra high-resolution image sets and efficiently compute dense 3D point clouds. We show that, using a robust descriptor for matching purposes and high-resolution images, we can skip the computationally expensive steps that other algorithms require. As a(More)