Christoph Pokorny

Learn More
OBJECTIVE Within this work an auditory P300 brain-computer interface based on tone stream segregation, which allows for binary decisions, was developed and evaluated. METHODS AND MATERIALS Two tone streams consisting of short beep tones with infrequently appearing deviant tones at random positions were used as stimuli. This paradigm was evaluated in 10(More)
We investigate whether an electroencephalography technique could be used for yes/no communication with auditory scanning. To be usable by the target group, i.e., minimally conscious individuals, such a brain-computer interface (BCI) has to be very simple and robust. This leads to the concept of a single-switch BCI (ssBCI). With an ssBCI it is possible to(More)
OBJECTIVE Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured(More)
In this study we report on the evaluation of a novel auditory single-switch BCI in nine patients diagnosed with MCS. The task included a simple and a complex oddball paradigm, the latter uses the tone stream segregation phenomenon. In all patients a significant difference between deviant and frequent tones could be observed in EEG. However, in some cases(More)
Steady-state somatosensory evoked potentials (SSSEPs) have been elicited using vibro-tactile stimulation on two fingers of the right hand. Fourteen healthy subjects participated in this study. A screening session, stimulating each participant's thumb, was conducted to determine individual optimal resonance-like frequencies. After this screening session, two(More)
Further development of an EEG based communication device for patients with disorders of consciousness (DoC) could benefit from addressing the following gaps in knowledge-first, an evaluation of different types of motor imagery; second, an evaluation of passive feet movement as a mean of an initial classifier setup; and third, rapid delivery of biased(More)
Objective: Within this work an auditory P300 brain-computer interface (BCI) based on tone stream segregation, which allows for binary decisions, was developed and evaluated. Materials and methods: Two tone streams consisting of short beep tones with infrequently appearing deviant tones at random positions were used as stimuli. This paradigm was evaluated in(More)
A tactile stimulation device for EEG measurements in clinical environments is proposed. The main purpose of the tactile stimulation device is to provide tactile stimulation to different parts of the body. To stimulate all four major types of mechanoreceptors, different stimulation patterns with frequencies in the range of 5-250 Hz have to be generated. The(More)
OBJECTIVE This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher(More)
In earlier literature, so-called twitches were used to support a user in a steady-state somatosensory evoked potential (SSSEP) based brain-computer interface (BCI) to focus attention on the requested targets. Within this work, we investigate the impact of these transient target stimuli on SSSEPs in a real-life BCI setup. A hybrid BCI was designed which(More)