Christoph-Peter Holleboom

Learn More
Recently, excitonic carotenoid-chlorophyll interactions have been proposed as a simple but effective model for the down-regulation of photosynthesis in plants. The model was proposed on the basis of quenching-correlated electronic carotenoid-chlorophyll interactions (Car S(1) → Chl) determined by Car S(1) two-photon excitation and red-shifted absorption(More)
Many aspects in the regulation of photosynthetic light-harvesting of plants are still quite poorly understood. For example, it is still a matter of debate which physical mechanism(s) results in the regulation and dissipation of excess energy in high light. Many researchers agree that electronic interactions between chlorophylls (Chl) and certain states of(More)
It is known that aggregation of isolated light-harvesting complex II (LHCII) in solution results in high fluorescence quenching, reduced chlorophyll fluorescence lifetime, and increased electronic coupling of carotenoid (Car) S1 and chlorophyll (Chl) Qy states, as determined by two-photon studies. It has been suggested that this behavior of aggregated LHCII(More)
  • 1