Christoph Niemöller

  • Citations Per Year
Learn More
We describe the development of acute myeloid leukemia (AML) in an adult with CBL syndrome caused by a heterozygous de novo germline mutation in CBL codon D390. In the AML bone marrow, the mutated CBL allele was homozygous after copy number-neutral loss-of-heterozygosity and amplified through a chromosomal gain; moreover, an inv(16)(p13q22) and, as assessed(More)
Intratumoral genetic heterogeneity may impact disease outcome. Gold standard for dissecting clonal heterogeneity are single-cell analyses. Here, we present an efficient workflow based on an advanced Single-Cell Printer (SCP) device for the study of gene variants in single cancer cells. To allow for precise cell deposition into microwells the SCP was(More)
We recently described the development of an inv(16) acute myeloid leukemia (AML) in a CBL mutated clonal hematopoiesis. Here, we further characterized the clonal composition and evolution of the AML based on the genetic information from the bulk specimen and analyses of individual bone marrow cells for mutations in CAND1, PTPRT, and DOCK6. To control for(More)
The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein-protein interactions enable TAT-dependent(More)
The design and selection of peptides targeting cellular proteins is challenging and often yields candidates with undesired properties. Therefore we deployed a new selection system based on the twin-arginine translocase (TAT) pathway of Escherichia coli, named hitchhiker translocation (HiT) selection. A pool of α-helix encoding sequences was designed and(More)
  • 1