Christoph Neinhuis

Learn More
Recent contributions from DNA sequences have revolutionized our concept of systematic relationships in angiosperms. However, parts of the angiosperm tree remain unclear. Previous studies have been based on coding or rDNA regions of relatively conserved genes. A phylogeny for basal angiosperms based on noncoding, fast-evolving sequences of the chloroplast(More)
Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperms. The matK gene evolves approximately three times faster(More)
The microrelief of plant surfaces, mainly caused by epicuticular wax crystalloids, serves different purposes and often causes effective water repellency. Furthermore, the adhesion of contaminating particles is reduced. Based on experimental data carried out on microscopically smooth (Fagus sylvatica L., Gnetum gnemon L., Heliconia densiflora Verlot,(More)
Piperales represent the largest basal angiosperm order with a nearly worldwide distribution. The order includes three species rich genera, Piper (ca. 2000 species), Peperomia (ca. 1500-1700 species), and Aristolochia s. l. (ca. 500 species). Sequences of the matK gene and the non-coding trnK group II intron are analysed for a dense set of 105 taxa(More)
Regeneration of plant epicuticular waxes was studied in 24 plant species by high-resolution scanning electron microscopy. According to their regeneration behaviour, four groups could be distinguished: (i) regeneration occurs at all stages of development; (ii) regeneration occurs only during leaf expansion; (iii) regeneration occurs only in fully developed(More)
The genus Peperomia is one of the largest genera of basal angiosperms, comprising about 1500-1700 pantropically distributed species. The currently accepted infrageneric classification divides Peperomia into nine subgenera and seven sections. This classification is based on some 200 species, primarily using fruit morphology. The monophyly of these(More)
Root contraction has been described for many species within the plant kingdom for over a century, and many suggestions have been made for mechanisms behind these contractions. To move the foliage buds deeper into the soil, the proximal part of the storage root of Trifolium pratense contracts by up to 30%. Anatomical studies have shown undeformed fibres next(More)
The cuticle of terrestrial vascular plants and some bryophytes is covered with a complex mixture of lipids, usually called epicuticular waxes. Self-assembly processes of wax molecules lead to crystalline three-dimensional micro- and nanostructures that emerge from an underlying wax film. This paper presents the first AFM study on wax regeneration on the(More)
The control of growth rate and the mechanical integrity of the tomato (Lycopersicon esculentum Mill.) fruit has been attributed to the exocarp. This study focused on the biomechanics of the fruit skin (FS) comprising cuticle, epidermis and a few subdermal cell layers, and the enzymatically isolated cuticular membrane (CM) during fruit growth and ripening.(More)
BACKGROUND AND AIMS The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection(More)