Christoph Hollnagel

Learn More
Little is known about the impact of supraspinal centers on the control of human locomotion. Analyzing brain activity can help to clarify their impact and to improve the effects of locomotor training. A fMRI-compatible pneumatic robotic device is presented that can generate freely programmable, highly repetitive periodic active and passive leg movements(More)
Pneumatics is one of the few actuation principles that can be used in an MR environment, since it can produce high forces without affecting imaging quality. However, pneumatic control is challenging, due to the air high compliance and cylinders non-linearities. Furthermore, the system’s properties may change for each subject. Here, we present novel control(More)
The goal of robotic therapy is to provoke motor plasticity via the application of robotic training strategies. Although robotic haptic guidance is the commonly used motor-training strategy to reduce performance errors while training, research on motor learning has emphasized that errors are a fundamental neural signal that drives motor adaptation. Thus,(More)
We investigated the feasibility of studying brain responses to controlled arm movements supported by an fMRI-compatible robotic interface. The study can be used in neurorehabilitation to provide insight into the cortical reorganization mechanism after damage to the nervous system, allow a better understanding of therapy-induced recovery and assist the(More)
  • 1