Christoph Heermann

Learn More
We present a new adaptive algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Numerical results show that this technique is faster than a standard method used for this problem.
We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported,(More)
  • 1