Christoph Freiberg

Learn More
We have generated a database of expression profiles carrying the transcriptional responses of the model organism Bacillus subtilis following treatment with 37 well-characterized antibacterial compounds of different classes. The database was used to build a predictor for the assignment of the mechanisms of action (MoAs) of antibacterial compounds by the use(More)
The multisubunit acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid biosynthesis, is broadly conserved among bacteria. Its rate-limiting role in formation of fatty acids makes this enzyme an attractive target for the design of novel broad-spectrum antibacterials. However, no potent inhibitors have been discovered so far. This(More)
ABC (ATP-binding cassette) transporters form the largest family of membrane proteins in micro-organisms where they are able to transport a wide variety of substrates against a concentration gradient, in an ATP-dependent process. Two genes from the same putative Bacillus subtilis operon, yheI and yheH, encoding possibly two different ABC transporters, were(More)
Cells containing reporters which are specifically induced via selected promoters are used in pharmaceutical drug discovery and in environmental biology. They are used in screening for novel drug candidates and in the detection of bioactive compounds in environmental samples. In this study, we generated and validated a set of five Bacillus subtilis promoters(More)
The pseudopeptide pyrrolidinedione antibiotics, such as moiramide B, have recently been discovered to target the multisubunit acetyl coenzyme A (acetyl-CoA) carboxylases of bacteria. In this paper, we describe synthetic variations of each moiety of the modularly composed pyrrolidinediones, providing insight into structure-activity relationships of(More)
As present antibiotics therapy becomes increasingly ineffectual, new technologies are required to identify and develop novel classes of antibacterial agents. An attractive alternative to the classical target-based approach is the use of promoter-inducible reporter assays for high-throughput screening. The wide usage of these assays is, however, limited by(More)
Peptide deformylation is an essential process in eubacteria. The peptide deformylase Def has been suggested to be an attractive target for antibacterial drug discovery. Some eubacteria including medically important pathogens possess two def-like genes. Until now, the functionality of both genes has been tested only in Staphylococcus aureus with the result(More)
The proton-translocating A1A0 ATP synthase/hydrolase of Methanosarcina mazei Gö1 was purified and shown to consist of six subunits of molecular masses of 65, 49, 40, 36, 25, and 7 kDa. Electron microscopy revealed that this enzyme is organized in two domains, the hydrophilic A1 and the hydrophobic A0 domain, which are connected by a stalk. Genes coding for(More)
We present a new strategy for predicting novel antibiotic mechanisms of action based on the analysis of whole-genome microarray data. We first built up a reference compendium of Bacillus subtilis expression profiles induced by 14 different antibiotics. This data set was expanded by adding expression profiles from mutants that showed downregulation of genes(More)
Recently we investigated the influence of classical and emerging antibiotics on the proteome of Bacillus subtilis including in our studies actinonin, a potent novel inhibitor of peptide deformylase. The protein synthesis pattern under actinonin treatment changed so dramatically that a direct comparison to the control pattern was impossible. Dual channel(More)