Learn More
We have generated a database of expression profiles carrying the transcriptional responses of the model organism Bacillus subtilis following treatment with 37 well-characterized antibacterial compounds of different classes. The database was used to build a predictor for the assignment of the mechanisms of action (MoAs) of antibacterial compounds by the use(More)
Cells containing reporters which are specifically induced via selected promoters are used in pharmaceutical drug discovery and in environmental biology. They are used in screening for novel drug candidates and in the detection of bioactive compounds in environmental samples. In this study, we generated and validated a set of five Bacillus subtilis promoters(More)
As present antibiotics therapy becomes increasingly ineffectual, new technologies are required to identify and develop novel classes of antibacterial agents. An attractive alternative to the classical target-based approach is the use of promoter-inducible reporter assays for high-throughput screening. The wide usage of these assays is, however, limited by(More)
ABC (ATP-binding cassette) transporters form the largest family of membrane proteins in micro-organisms where they are able to transport a wide variety of substrates against a concentration gradient, in an ATP-dependent process. Two genes from the same putative Bacillus subtilis operon, yheI and yheH, encoding possibly two different ABC transporters, were(More)
We deleted a subset of 27 open reading frames (ORFs) from Escherichia coli which encode previously uncharacterized, probably soluble gene products homologous to proteins from a broad spectrum of bacterial pathogens such as Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae and Enterococcus faecalis and only distantly related to(More)
Despite year-to-year increases in R & D budgets, the number of successful NCEs (new chemical entities) has continued to decline. Drug companies are looking into new ways to make research processes more efficient, to manage information better, and to improve collaboration among research groups. This shift from an artisan approach to an organized, streamlined(More)
Antibacterial drug discovery has experienced a paradigm shift from phenotypic screening for antibacterial activity to rational inhibition of preselected targets. Functional genomics techniques are implemented at various stages of the early drug discovery process and play a central role in target validation and mode of action determination. The spectrum of(More)
The multisubunit acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid biosynthesis, is broadly conserved among bacteria. Its rate-limiting role in formation of fatty acids makes this enzyme an attractive target for the design of novel broad-spectrum antibacterials. However, no potent inhibitors have been discovered so far. This(More)
We present a new strategy for predicting novel antibiotic mechanisms of action based on the analysis of whole-genome microarray data. We first built up a reference compendium of Bacillus subtilis expression profiles induced by 14 different antibiotics. This data set was expanded by adding expression profiles from mutants that showed downregulation of genes(More)
The NfrA protein, a putative essential oxidoreductase in the soil bacterium Bacillus subtilis, is induced under heat shock and oxidative stress conditions. In order to characterize the function of an homologous NfrA protein in Staphylococcus aureus, an nfrA deletion strain was constructed, the protein was purified, the enzymatic activity was determined, and(More)