Christoph Brüser

Learn More
A ballistocardiograph records the mechanical activity of the heart. We present a novel algorithm for the detection of individual heart beats and beat-to-beat interval lengths in ballistocardiograms (BCGs) from healthy subjects. An automatic training step based on unsupervised learning techniques is used to extract the shape of a single heart beat from the(More)
Reliable and accurate estimation of instantaneous frequencies of physiological rhythms, such as heart rate, is critical for many healthcare applications. Robust estimation is especially challenging when novel unobtrusive sensors are used for continuous health monitoring in uncontrolled environments, because these sensors can create significant amounts of(More)
Our work covers improvements in sensors and signal processing for unobtrusive, long-term monitoring of cardiac (and respiratory) rhythms using only non-invasive vibration sensors. We describe a system for the unobtrusive monitoring of vital signs by means of an array of novel optical ballistocardiography (BCG) sensors placed underneath a regular bed(More)
The heart rate and its variability play a vital role in the continuous monitoring of patients, especially in the critical care unit. They are commonly derived automatically from the electrocardiogram as the interval between consecutive heart beat. While their identification by QRS-complexes is straightforward under ideal conditions, the exact localization(More)
We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical(More)
Contactless vital sign measurement technologies often have the drawback of severe motion artifacts and periods in which no signal is available. However, using several identical or physically different sensors, redundancy can be used to decrease the error in noncontact heart rate estimation, while increasing the time period during which reliable data are(More)
The aim of this paper is to present and evaluate algorithms for heartbeat interval estimation from multiple spatially distributed force sensors integrated into a bed. Moreover, the benefit of using multichannel systems as opposed to a single sensor is investigated. While it might seem intuitive that multiple channels are superior to a single channel, the(More)
This work gives an overview about some non-contact methods for monitoring of physiological activity. In particular, the focus is on ballistocardiography, capacitive ECG, Infrared Thermography, Magnetic Impedance Monitroing and Photoplethymographic Imaging. The principles behind the methods are described and an inside into possible medical applications is(More)
BACKGROUND Heart rate monitoring is especially interesting in patients with atrial fibrillation (AF) and is routinely performed by ECG. A ballistocardiography (BCG) foil is an unobtrusive sensor for mechanical vibrations. We tested the correlation of heartbeat cycle length detection by a novel algorithm for a BCG foil to an ECG in AF and sinus rhythm (SR).(More)
We propose and evaluate an unsupervised method for the estimation of heart rate variability (HRV) indices from ballistocardiograms (BCGs) recorded by a bed-mounted, electromechanical film (EMFi) sensor during sleep. After estimating the beat-to-beat intervals from the BCGs, short-term timeand frequency-domain HRV indices are computed and compared to an ECG(More)