Christoph Brücker

Learn More
Wakes caused by swimming goldfish (Carassius auratus) were measured with a particle image velocimetry system and analyzed using a cross-correlation technique. Particle velocities in a horizontal plane (size of measuring plane 24 cmx32 cm or 20 cmx27 cm) were determined, and the vorticity in the plane was derived from these data. The wake behind a swimming(More)
The factors contributing to human voice production are not yet fully understood. Even normal human phonation with a symmetric glottal opening area is still the subject of extensive investigation. Among others, it has already been shown that fluid dynamics has a strong influence on the vocal process. The full characterization of the glottal jet has not been(More)
If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to(More)
Rheophilic fish commonly experience unsteady flows and hydrodynamic perturbations. Instead of avoiding turbulent zones though, rheophilic fish often seek out these zones for station holding. A behaviour associated with station holding in running water is called entraining. We investigated the entraining behaviour of rainbow trout swimming in the wake of a(More)
The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can(More)
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore,(More)
Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was(More)
Recent pike-like predatory fishes attack prey animals by a quick strike out of rest or slow movement. This fast-start behaviour includes a preparatory, a propulsive and a final phase, and the latter is crucial for the success of the attack. To prevent prey from escape, predators tend to minimise the duration of the interaction and the disturbance caused to(More)
The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure(More)