Learn More
We have found that epithelial cells engage in a process of cadherin-mediated intercellular adhesion that utilizes calcium and actin polymerization in unexpected ways. Calcium stimulates filopodia, which penetrate and embed into neighboring cells. E-cadherin complexes cluster at filopodia tips, generating a two-rowed zipper of embedded puncta. Opposing cell(More)
Desmosomes first assemble in the E3.5 mouse trophectoderm, concomitant with establishment of epithelial polarity and appearance of a blastocoel cavity. Throughout development, they increase in size and number and are especially abundant in epidermis and heart muscle. Desmosomes mediate cell-cell adhesion through desmosomal cadherins, which differ from(More)
Sensory neurodegeneration occurs in mice defective in BPAG1, a gene encoding cytoskeletal linker proteins capable of anchoring neuronal intermediate filaments to actin cytoskeleton. While BPAG1 null mice fail to anchor neurofilaments (NFs), BPAG1/NF null mice still degenerate in the absence of NFs. We report a novel neural splice form that lacks the(More)
When surface epithelium was conditionally targeted for ablation of alpha-catenin, hair follicle development was blocked and epidermal morphogenesis was dramatically affected, with defects in adherens junction formation, intercellular adhesion, and epithelial polarity. Differentiation occurred, but epidermis displayed hyperproliferation, suprabasal mitoses,(More)
To enable stratification and barrier function, the epidermis must permit self-renewal while maintaining adhesive connections. By generating K14-GFP-actin mice to monitor actin dynamics in cultured primary keratinocytes, we uncovered a role for the actin cytoskeleton in establishing cellular organization. During epidermal sheet formation, a polarized network(More)
Decapitated Hydra regenerate their heads via morphallaxis, i.e., without significant contributions made by cell proliferation or interstitial stem cells. Indeed, Hydra depleted of interstitial stem cells regenerate robustly, and Wnt3 from epithelial cells triggers head regeneration. However, we find a different mechanism controlling regeneration after(More)
The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain and subsidiary oscillators in most peripheral cell types. While oscillators in SCN neurons are known to function in a self-sustained fashion, peripheral oscillators have been thought to damp rapidly when disconnected from the control(More)
The major epidermal integrins are ␣ 3 ␤ 1 and hemidesmosome-specific ␣ 6 ␤ 4; both share laminin 5 as ligand. Keratinocyte culture studies implicate both inte-grins in adhesion, proliferation, and stem cell maintenance and suggest unique roles for ␣␤ 1 integrins in migration and terminal differentiation. In mice, however, whereas ablation of ␣ 6 or ␤ 4(More)
Mammalian circadian oscillators are considered to rely on transcription/translation feedback loops in clock gene expression. The major and essential loop involves the autorepression of cryptochrome (Cry1, Cry2) and period (Per1, Per2) genes. The rhythm-generating circuitry is functional in most cell types, including cultured fibroblasts. Using this system,(More)
OBJECTIVE To investigate the intrasession reliability of center of pressure (COP) parameters calculated from force platform measurements. DESIGN A cross-sectional study. SETTING Gait and balance laboratory. PARTICIPANTS Community-dwelling healthy older adults (N=63) above the age of 62 years (mean age, 78.74 y). INTERVENTIONS Not applicable. MAIN(More)