Christoph Baeumer

  • Citations Per Year
Learn More
The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules(More)
Bidirectional interdependency between graphene doping level and ferroelectric polarization is demonstrated in graphene/PbZr0.2Ti0.8O3 hybrid structures. The polarization of the PbZr0.2Ti0.8O3 can be effectively switched with graphene electrodes and can in turn alter carrier type and density in the graphene. A complete reversal of the current-voltage(More)
The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in(More)
The influence of non-equilibrium and equilibrium processes during growth of LaAlO3/SrTiO3 (LAO/STO) heterostructures is analyzed. We investigate the electronic properties of LAO/STO heterostructures obtained at constant growth conditions after annealing in different oxygen atmospheres within the typical growth window (1 × 10(-4) mbar -1 × 10(-2) mbar). The(More)
The next technological leap forward will be enabled by new materials and inventive means of manipulating them. Among the array of candidate materials, graphene has garnered much attention; however, due to the absence of a semiconducting gap, the realization of graphene-based devices often requires complex processing and design. Spatially controlled local(More)
Nanoscale redox reactions in transition metal oxides are believed to be the physical foundation of memristive devices, which present a highly scalable, low-power alternative for future non-volatile memory devices. The interface between noble metal top electrodes and Nb-doped SrTiO3 single crystals may serve as a prominent but not yet well-understood example(More)
The control and rational design of redox-based memristive devices, which are highly attractive candidates for next-generation nonvolatile memory and logic applications, is complicated by competing and poorly understood switching mechanisms, which can result in two coexisting resistance hystereses that have opposite voltage polarity. These competing(More)
Emerging electrical and magnetic properties of oxide interfaces are often dominated by the termination and stoichiometry of substrates and thin films, which depend critically on the growth conditions. Currently, these quantities have to be measured separately with different sophisticated techniques. This report will demonstrate that the analysis of angle(More)
In this study, the influence of the local oxygen vacancy concentration on piezoresponse force microscopy (PFM) measurements was investigated. Ultra-thin single-crystalline SrTiO3 thin films were deposited on niobium doped SrTiO3 substrates and analyzed using a combined PFM and local conductive atomic force microscopy (LC-AFM) measurement setup. After(More)
This deliverable describes concepts and implementation strategies for CORBA/TMN integration, which will serve as the basis for the implementation of the second version of the CORBA/CMIP gateway to be used in the Prospect trial. The concepts described in this deliverable define a gateway which will allow CORBA based management applications to manage OSI(More)