Learn More
The pathological mechanisms underlying neurological deficits observed in individuals born prematurely are not completely understood. A common form of injury in the preterm population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate PWMI, there is an urgent need to understand the(More)
Traumatic brain injury is followed by increased extracellular glutamate concentration. Uptake of glutamate is mainly mediated by the glial glutamate transporters GLAST and GLT-1. Extent and distribution of GLAST and GLT-1 were studied in a rat model of controlled cortical impact injury (CCII). Western Blot analysis revealed lowest levels of GLAST and GLT-1(More)
Pharmacological blockade of NMDA receptor function induces apoptotic neurodegeneration in the developing rat brain. However, the use of NMDA receptor antagonists as anesthetics and sedatives represents a difficult-to-avoid clinical practice in pediatrics. This warrants the search for adjunctive neuroprotective measures that will prevent or ameliorate(More)
Propofol and sevoflurane are commonly used drugs in pediatric anesthesia. Exposure of newborn rats to a variety of anesthetics has been shown to induce apoptotic neurodegeneration in the developing brain. Newborn Wistar rats were treated with repeated intraperitoneal injections of propofol or sevoflurane inhalation and compared to controls. Brains were(More)
Intrauterine infection and inflammation are major reasons for preterm birth. The switch from placenta-mediated to lung-mediated oxygen supply during birth is associated with a sudden rise of tissue oxygen tension that amounts to relative hyperoxia in preterm infants. Both infection/inflammation and hyperoxia have been shown to be involved in brain injury of(More)
BACKGROUND Elevated intracranial pressure (ICP) resulting from impaired drainage of cerebrospinal fluid (CSF) causes hydrocephalus with damage to the central nervous system. Clinical symptoms of elevated intracranial pressure (ICP) in infants may be difficult to diagnose, leading to delayed treatment by shunt placement. Until now, no biochemical marker of(More)
BACKGROUND Group B Streptococcus (GBS) and Streptococcus pneumoniae (SP) are leading causes of bacterial meningitis in neonates and children. Each pathogen produces a pore-forming cytolytic toxin, β-hemolysin/cytolysin (β-h/c) by GBS and pneumolysin by SP. The aim of this study was to understand the role of these pore-forming cytotoxins, in particular of(More)
In preterm infants, the risk to develop attention-deficit/hyperactivity disorder is 3 to 4-fold higher than in term infants. Moreover, preterm infants exhibit deficits in motor coordination and balance. Based on clinical data, higher oxygen levels in preterm infants lead to worse neurological outcome, and experimental hyperoxia causes wide-ranging cerebral(More)
Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied(More)
In the immature human brain, periventricular leukomalacia (PVL) is the predominant white matter injury underlying the development of cerebral palsy. PVL has its peak incidence during a well-defined period in human brain development (23-32 weeks postconceptional age) characterized by extensive oligodendrocyte migration and maturation. We hypothesized that(More)