Christoforos E. Kozyrakis

Learn More
Transactional Memory (TM) is emerging as a promising technology to simplify parallel programming. While several TM systems have been proposed in the research literature, we are still missing the tools and workloads necessary to analyze and compare the proposals. Most TM systems have been evaluated using microbenchmarks, which may not be representative of(More)
In this paper, we propose a new shared memory model: transactional memory coherence and consistency (TCC). TCC provides a model in which atomic transactions are always the basic unit of parallel work, communication, memory coherence, and memory reference consistency. TCC greatly simplifies parallel software by eliminating the need for synchronization using(More)
We propose signature-accelerated transactional memory (SigTM), ahybrid TM system that reduces the overhead of software transactions. SigTM uses hardware signatures to track the read-set and write-set forpending transactions and perform conflict detection between concurrent threads. All other transactional functionality, including dataversioning, is(More)
High-level semantic vulnerabilities such as SQL injection and crosssite scripting have surpassed buffer overflows as the most prevalent security exploits. The breadth and diversity of software vulnerabilities demand new security solutions that combine the speed and practicality of hardware approaches with the flexibility and robustness of software systems.(More)
Dynamic runtimes can simplify parallel programming by automatically managing concurrency and locality without further burdening the programmer. Nevertheless, implementing such runtime systems for large-scale, shared-memory systems can be challenging. This work optimizes Phoenix, a MapReduce runtime for shared-memory multi-cores and multiprocessors, on a(More)
Architectural simulation is time-consuming, and the trend towards hundreds of cores is making sequential simulation even slower. Existing parallel simulation techniques either scale poorly due to excessive synchronization, or sacrifice accuracy by allowing event reordering and using simplistic contention models. As a result, most researchers use sequential(More)
Disk-oriented approaches to online storage are becoming increasingly problematic: they do not scale gracefully to meet the needs of large-scale Web applications, and improvements in disk capacity have far outstripped improvements in access latency and bandwidth. This paper argues for a new approach to datacenter storage called RAMCloud, where information is(More)
Transactional memory (TM) provides mechanisms that promise to simplify parallel programming by eliminating the need for locks and their associated problems (deadlock, livelock, priority inversion, convoying). For TM to be adopted in the long term, not only does it need to deliver on these promises, but it needs to scale to a high number of processors. To(More)
Due to their high volume, general-purpose processors, and now chip multiprocessors (CMPs), are much more cost effective than ASICs, but lag significantly in terms of performance and energy efficiency. This paper explores the sources of these performance and energy overheads in general-purpose processing systems by quantifying the overheads of a 720p HD(More)
Distributed processing frameworks, such as Yahoo!'s Hadoop and Google's MapReduce, have been successful at harnessing expansive datacenter resources for large-scale data analysis. However, their effect on datacenter energy efficiency has not been scrutinized. Moreover, the filesystem component of these frameworks effectively precludes scale-down of clusters(More)