Learn More
The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the(More)
We report on a large electric-field response of quasi-two-dimensional electron gases generated at interfaces in epitaxial heterostructures grown from insulating oxides. These device structures are characterized by doping layers that are spatially separated from high-mobility quasi-two-dimensional electron gases and therefore present an oxide analog to(More)
Microcalcifications can be indicative in the diagnosis of early breast cancer. Here we report a non-invasive diagnostic method that may potentially distinguish between different types of microcalcifications using X-ray phase-contrast imaging. Our approach exploits the complementary nature of the absorption and small-angle scattering signals of(More)
At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet(More)
Experimental and theoretical investigations have demonstrated that a quasi-two-dimensional electron gas (q-2DEG) can form at the interface between two insulators: non-polar SrTiO3 and polar LaTiO3 (ref. 2), LaAlO3 (refs 3-5), KTaO3 (ref. 7) or LaVO3 (ref. 6). Electronically, the situation is analogous to the q-2DEGs formed in semiconductor heterostructures(More)
The conducting interface of LaAlO3/SrTiO3 heterostructures has been studied by hard x-ray photoelectron spectroscopy. From the Ti 2p signal and its angle dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3 overlayers. Our results point(More)
The physics of the superconducting state in two-dimensional (2D) electron systems is relevant to understanding the high-transition-temperature copper oxide superconductors and for the development of future superconductors based on interface electron systems. But it is not yet understood how fundamental superconducting parameters, such as the spectral(More)
The physical mechanisms responsible for the formation of a two-dimensional electron gas at the interface between insulating SrTiO(3) and LaAlO(3) have remained a contentious subject since its discovery in 2004. Opinion is divided between an intrinsic mechanism involving the build-up of an internal electric potential due to the polar discontinuity at the(More)
With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier concentration of N(s) approximately = 5-9x10(13) cm(-2), an effective mass of m*=3.2+/-0.4m(e), and a strongly frequency dependent mobility. The latter are similar as in bulk SrTi(1-x)Nb(x)O3 and(More)
The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron-phonon spectral function from tunneling spectra and conclude, without ruling out contributions(More)