Learn More
Integrative, centromeric, and episomal plasmids are essential for easy, fast, and reliable genetic manipulation of yeast. We constructed a system of shuttle vectors based on the widely used plasmids of the pRS series. We used genes conferring resistance to Geneticin (kanMX4), nourseothricin (natNT2), and hygromycin B (hphNT1) as markers. The centromeric and(More)
Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are(More)
Methods that allow for the manipulation of genes or their products have been highly fruitful for biomedical research. Here, we describe a method that allows the control of protein abundance by a genetically encoded regulatory system. We developed a dormant N-degron that can be attached to the N-terminus of a protein of interest. Upon expression of a(More)
BACKGROUND Tools for in vivo manipulation of protein abundance or activity are highly beneficial for life science research. Protein stability can be efficiently controlled by conditional degrons, which induce target protein degradation at restrictive conditions. RESULTS We used the yeast Saccharomyces cerevisiae for development of a conditional,(More)
Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding(More)
Site-specific proteases are important tools for in vitro and in vivo cleavage of proteins. They are widely used for diverse applications, like protein purification, assessment of protein-protein interactions or regulation of protein localization, abundance or activity. Here, we report the development of a procedure to select protease variants with altered(More)
Regulated proteolysis by the proteasome is one of the fundamental mechanisms used in eukaryotic cells to control cellular behavior. Efficient tools to regulate protein stability offer synthetic influence on molecular level on a selected biological process. Optogenetic control of protein stability has been achieved with the photo-sensitive degron (psd)(More)
Synthetic biology aims at manipulating biological systems by rationally designed and genetically introduced components. Efforts in photoactuator engineering resulted in microorganisms reacting to extracellular light-cues with various cellular responses. Some of them lead to the formation of macroscopically observable outputs, which can be used to generate(More)
Feedback inhibition is a common mechanism to adjust the activity of an enzyme in accordance with the abundance of a product. The enzyme catalyzing the initial, committing step of a biosynthesis cascade is subject to negative feedback by the end-product. This kind of regulation is frequent in all cell types to regulate biosynthesis of numerous metabolites; a(More)
Synthetic biology gave rise to microorganisms engineered to transform light cues to appropriate outputs to create images on living matter. Generation of such a image commonly requires enzymatic conversion of a colorless compound to a visible pigment. In yeast, this can be achieved by blocking the adenine biosynthesis pathway at a specific step: Fusing the(More)