Christof Seiler

Learn More
Mandible fractures are classified depending on their location. In clinical practice, locations are grouped into regions at different scales according to anatomical, functional and esthetic considerations. Implant design aims at defining the optimal implant for each patient. Emerging population-based techniques analyze the anatomical variability across a(More)
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape(More)
Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an(More)
We propose to increment a statistical shape model with surrogate variables such as anatomical measurements and patient-related information, allowing conditioning the shape distribution to follow prescribed anatomical constraints. The method is applied to a shape model of the human femur, modeling the joint density of shape and anatomical parameters as a(More)
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor(More)
In computer-assisted orthopaedic surgery, recovering three-dimensional patient-specific anatomy from incomplete information has been focus of interest due to several factors such as less invasive surgical procedures, reduced radiation doses, and rapid intra-operative updates of the anatomy. The aim of this paper is to report results obtained combining(More)
Understanding the motion of the heart through the cardiac cycle can give useful insight for a range of different pathologies. In particular , quantifying regional cardiac motion can help clinicians to better determine cardiac function by identifying regions of thickened, ischemic or infarcted tissue. In this work we propose a method for cardiac motion(More)
Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We(More)
The Jacobi metric introduced in mathematical physics can be used to analyze Hamiltonian Monte Carlo (HMC). In a geometrical setting, each step of HMC corresponds to a geodesic on a Riemannian manifold with a Jacobi metric. Our calculation of the sectional curvature of this HMC manifold allows us to see that it is positive in cases such as sampling from a(More)