Christof Reinhart

Learn More
Architecture and applications of a massively parallel processor are described. Volumes of 256×256×128 voxels can be visualized at a frame rate of 10 Hz using volume oriented visualization algorithms. A prototype of the scalable and modular system is currently set up. 3D rotation around an arbitrary rotation axis, perspective, zooming, and arbitrary gray(More)
Epitopes differing among isoenzymes of creatine kinase (CK) are apparently limited in number and poorly immunogenic in vivo. Especially for the BB-CK isoenzyme, very few monoclonal antibodies (mAb) are available. Here, we use in vitro selection with a synthetic human phage display antibody library and develop isoenzyme competition and peptide panning(More)
A two-stage methodology for interactive segmentation of volume data sets is presented in this paper. In the first stage (presegmentation) a 3D watershed transformation is used for segmenting the data in different small regions. According to the neighboring relationships between this regions a region adjacency graph (RAG) is constructed. During the second(More)
. VIRIM, a real-time direct volume rendering system is evaluated for medical applications. Experiences concerning the hardware architecture are discussed. The issues are the flexibility of VIRIM, the restriction to two gradient components only, the duplication of the volume data sets on different modules, the size of the volume data set, the gray-value(More)
New requirements to scan long objects are fostering the use of helical scan trajectories. An exact filtered backprojection-based method has been suggested by Katsevich. In this paper, we investigate the applicability of this reconstruction strategy in industrial CT vs. conventional filtered backprojection type reconstructions. Hereby, we study the accuracy(More)
  • 1