Christof Markus Aegerter

Learn More
Apical cell surfaces in metazoan epithelia, such as the wing disc of Drosophila, resemble polygons with different numbers of neighboring cells. The distribution of these polygon numbers has been shown to be conserved. Revealing the mechanisms that lead to this topology might yield insights into how the structural integrity of epithelial tissues is(More)
For animal development it is necessary that organs stop growing after they reach a certain size. However, it is still largely unknown how this termination of growth is regulated. The wing imaginal disc of Drosophila serves as a commonly used model system to study the regulation of growth. Paradoxically, it has been observed that growth occurs uniformly(More)
The regulation of organ size constitutes a major unsolved question in developmental biology. The wing imaginal disc of Drosophila serves as a widely used model system to study this question. Several mechanisms have been proposed to have an impact on final size, but they are either contradicted by experimental data or they cannot explain a number of key(More)
The transition from diffusive transport to localization of waves should occur for any type of classical or quantum wave in any media as long as the wavelength becomes comparable to the transport mean free path l*. The signatures of localization and those of absorption, or bound states, can, however, be similar, such that an unequivocal proof of the(More)
Morphogenesis, the process by which all complex biological structures are formed, is driven by an intricate interplay between genes, growth, as well as intra- and intercellular forces. While the expression of different genes changes the mechanical properties and shapes of cells, growth exerts forces in response to which tissues, organs and more complex(More)
During embryonic development, a spatial pattern is formed in which proportions are established precisely. As an early pattern formation step in Drosophila embryos, an anterior-posterior gradient of Bicoid (Bcd) induces hunchback (hb) expression (Nature 337 (1989) 138; Nature 332 (1988) 281). In contrast to the Bcd gradient, the Hb profile includes(More)
UNLABELLED Control of cessation of growth in developing organs has recently been proposed to be influenced by mechanical forces acting on the tissue due to its growth. In particular, it was proposed that stretching of the tissue leads to an increase in cell proliferation. Using the model system of the Drosophila wing imaginal disc, we directly stretch the(More)
A major limitation of any type of microscope is the penetration depth in turbid tissue. Here, we demonstrate a fundamentally novel kind of fluorescence microscope that images through optically thick turbid layers. The microscope uses scattered light, rather than light propagating along a straight path, for imaging with subwavelength resolution. Our method(More)
Using time-resolved transmission measurements, we have found indications of Anderson localization of light in bulk three-dimensional systems. The observed deviation from classical diffusion is in good accord with theoretical predictions of localization and cannot be explained by absorption or experimental artifacts such as stratification, fluorescence, or(More)
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we(More)