Learn More
—A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing saliency. The system breaks down the complex problem of scene(More)
A new bottom-up visual saliency model, Graph-Based Visual Saliency (GBVS), is proposed. It consists of two steps: rst forming activation maps on certain feature channels, and then normalizing them in a way which highlights conspicuity and admits combination with other maps. The model is simple, and biologically plausible insofar as it is naturally(More)
Most models of visual search, whether involving overt eye movements or covert shifts of attention, are based on the concept of a saliency map, that is, an explicit two-dimensional map that encodes the saliency or conspicuity of objects in the visual environment. Competition among neurons in this map gives rise to a single winning location that corresponds(More)
Five important trends have emerged from recent work on computational models of focal visual attention that emphasize the bottom-up, image-based control of attentional deployment. First, the perceptual saliency of stimuli critically depends on the surrounding context. Second, a unique 'saliency map' that topographically encodes for stimulus conspicuity over(More)
How random is the discharge pattern of cortical neurons? We examined recordings from primary visual cortex (V1; Knierim and Van Essen, 1992) and extrastriate cortex (MT; Newsome et al., 1989a) of awake, behaving macaque monkey and compared them to analytical predictions. For nonbursting cells firing at sustained rates up to 300 Hz, we evaluated two indices(More)
Selective visual attention is believed to be responsible for serializing visual information for recognizing one object at a time in a complex scene. But how can we attend to objects before they are recognized? In coherence theory of visual cognition, so-called proto-objects form volatile units of visual information that can be accessed by selective(More)
Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources--including Na(+) and Ca(2+) spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane(More)
It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show(More)
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level,(More)
The nature of the quantitative relationship between single-neuron recordings in monkeys and functional magnetic resonance imaging (fMRI) measurements in humans is crucial to understanding how experiments in these different species are related, yet it remains undetermined. We measured brain activity in humans attending to moving visual stimuli, using blood(More)