Learn More
—A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing saliency. The system breaks down the complex problem of scene(More)
Most models of visual search, whether involving overt eye movements or covert shifts of attention, are based on the concept of a saliency map, that is, an explicit two-dimensional map that encodes the saliency or conspicuity of objects in the visual environment. Competition among neurons in this map gives rise to a single winning location that corresponds(More)
Psychophysical and physiological evidence indicates that the visual system of primates and humans has evolved a specialized processing focus moving across the visual scene. This study addresses the question of how simple networks of neuron-like elements can account for a variety of phenomena associated with this shift of selective visual attention.(More)
How random is the discharge pattern of cortical neurons? We examined recordings from primary visual cortex (V1; Knierim and Van Essen, 1992) and extrastriate cortex (MT; Newsome et al., 1989a) of awake, behaving macaque monkey and compared them to analytical predictions. For nonbursting cells firing at sustained rates up to 300 Hz, we evaluated two indices(More)
Illusions that produce perceptual suppression despite constant retinal input are used to manipulate visual consciousness. Here we report on a powerful variant of existing techniques, continuous flash suppression. Distinct images flashed successively at approximately 10 Hz into one eye reliably suppress an image presented to the other eye. The duration of(More)
The nature of the quantitative relationship between single-neuron recordings in monkeys and functional magnetic resonance imaging (fMRI) measurements in humans is crucial to understanding how experiments in these different species are related, yet it remains undetermined. We measured brain activity in humans attending to moving visual stimuli, using blood(More)
It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show(More)