Christof K. Biebricher

Learn More
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of(More)
Basic principles underlying the population dynamics of bacteria and viruses are presented, with emphasis on RNA viruses. Concepts reviewed here include fitness, mutant generation, competition, selection, sequence space and the theoretical origins of quasispecies. A "wild-type" virus is no longer viewed as the fittest type, but as the center of gravity of a(More)
The replication of a RNA template catalyzed by Q beta replicase was obtained in oleic acid/oleate vesicles simultaneously with the self-reproduction of the vesicles themselves. This was accomplished by entrapping the enzyme Q beta replicase, the RNA template, and the ribonucleotides ATP, CTP, GTP, and UTP inside the vesicles. The water-insoluble oleic(More)
The concept of the quasispecies as a society formed from a clone of an asexually reproducing organism is reviewed. A broad spectrum of mutants is generated that compete one with another. Eventually a steady state is formed where each mutant type is represented according to its fitness and its formation by mutation. This quasispecies has a defined wild type(More)
Different RNA species that are replicated by Q beta replicase have related secondary structures: for both plus and minus strands, "leader" stem structures were found at their 5' termini, while their 3' termini were unpaired. Parallel structures in complementary strands rather than antiparallel ones require the occurrence of wobble pairs and other(More)
Q beta replicase amplifies certain short-chained RNA templates autocatalytically with high efficiency. In the absence of extraneously added template, synthesis of new RNA species by Q beta replicase is observed under conditions of high enzyme and substrate concentrations and after long lag times. Even under identical conditions, different RNA species are(More)