Learn More
The replication of a RNA template catalyzed by Q beta replicase was obtained in oleic acid/oleate vesicles simultaneously with the self-reproduction of the vesicles themselves. This was accomplished by entrapping the enzyme Q beta replicase, the RNA template, and the ribonucleotides ATP, CTP, GTP, and UTP inside the vesicles. The water-insoluble oleic(More)
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of(More)
Different RNA species that are replicated by Q beta replicase have related secondary structures: for both plus and minus strands, "leader" stem structures were found at their 5' termini, while their 3' termini were unpaired. Parallel structures in complementary strands rather than antiparallel ones require the occurrence of wobble pairs and other(More)
Q beta replicase amplifies certain short-chained RNA templates autocatalytically with high efficiency. In the absence of extraneously added template, synthesis of new RNA species by Q beta replicase is observed under conditions of high enzyme and substrate concentrations and after long lag times. Even under identical conditions, different RNA species are(More)
The process of Darwinian selection in the self-replication of single-stranded RNA by Q beta replicase was investigated by analytical and computer-simulation methods. For this system, the relative population change of the competing species was found to be a useful definition of selection value, calculable from measurable kinetic parameters and concentrations(More)
The effects of kinetic plus-minus asymmetry and formation of inactive double strands on the self-replication of single-stranded RNA were investigated by analytical and computer simulation methods. It was found that extensions of the analysis developed previously for more restricted models lead to simple formulations that can be used for interpretation of(More)