#### Filter Results:

#### Publication Year

2003

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

OPEP is a suite of FORTRAN programs targeted at the optimal partitioning of molecular electric properties. It includes an interactive module for the construction of Cartesian grids of points, on which either the molecular electrostatic potential or the induction energy is mapped. The generation of distributed multipoles and polarizabilities is achieved… (More)

- Kestutis Aidas, Celestino Angeli, Keld L Bak, Vebjørn Bakken, Radovan Bast, Linus Boman +78 others
- 2014

- Christof Hättig, Arnim Hellweg, Andreas Köhn
- Physical chemistry chemical physics : PCCP
- 2006

We present a parallel implementation of second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation (RI-MP2). The implementation is based on a recent improved sequential implementation of RI-MP2 within the Turbomole program package and employs the message passing interface (MPI) standard for communication between… (More)

A detailed description of the explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12) method, as implemented in the TURBOMOLE program package, is presented. The TURBOMOLE implementation makes use of density fitting, which greatly reduces the prefactor for integral evaluation. Methods are available for the treatment of ground states… (More)

- Nora K Graf, Daniel H Friese, Nina O C Winter, Christof Hättig
- The Journal of chemical physics
- 2015

We report an implementation of static and frequency-dependent excited state polarizabilities for the approximate coupled cluster single and doubles model CC2 as analytic second derivatives of an excited state quasienergy Lagrangian. By including appropriate conditions for the normalization and the phase of the eigenvectors, divergent secular terms are… (More)

In this study, we predict vibronic two-photon absorption (TPA) spectra for 4-nitroaniline in vacuo. The simulations are performed using density functional theory and the approximate second-order coupled-cluster singles and doubles model CC2. Thereby we also demonstrate the possibility of simulations of vibronic TPA spectra with ab initio wavefunction… (More)

- Daniel H Friese, Christof Hättig
- Physical chemistry chemical physics : PCCP
- 2014

We investigate the performance of the approximate coupled cluster singles- and doubles model CC2 in the prediction of optical rotations of organic molecules. For this purpose we employ a combination of two test sets from the literature which include small and medium-sized rigid organic molecules and a series of helicenes. CC2 calculations on molecules as… (More)

We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N(5)) scaling of the PNO construction is… (More)

- Daniel H Friese, Christof Hättig, Jörg Koβmann
- Journal of chemical theory and computation
- 2013

An implementation of analytic second derivatives for the approximate coupled cluster singles and doubles model CC2 and for second-order Møller-Plesset perturbation theory (MP2) will be presented. The RI approximation for the two-electron repulsion integrals is used to reduce memory demands, operation count, and I/O requirements. During the calculation, the… (More)

We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double… (More)