Christine Scholtyssek

Learn More
The brightness discrimination ability of a male harbor seal was investigated at an ambient illumination of 0.9lx. The visual stimuli consisted of circular gray discs that were presented on a black background on a TFT monitor. Eight standard intensities were tested against sets of lower comparison intensities. In accordance with Weber's law we observed a(More)
Pinnipeds are amphibious mammals. The amphibious lifestyle is challenging for all sensory systems including vision, and specific adaptations of the eyes have evolved in response to the changed requirements concerning vision in two optically very different media, water and air. The present review summarizes the information available on pinniped eyes with an(More)
To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to(More)
In this study, the contrast sensitivity function (CSF) of one harbor seal was determined behaviorally in a go-/no-go-experiment at an ambient light of 0.9 lx in air. Contrast sensitivity was assessed as the reciprocal value of the threshold contrast for spatial frequencies varying between 0.03 and 1.5 cycles/deg, which were displayed with contrast ranging(More)
We investigated the formation of an abstract concept of same/different in a harbor seal by means of a two-item same/different task. Stimuli were presented on a TFT monitor. The subject was trained to respond according to whether two horizontally aligned white shapes presented on a black background were the same, or different from each other, by giving a(More)
Color conveys important information for birds in tasks such as foraging and mate choice, but in the natural world color signals can vary substantially, so birds may benefit from generalizing responses to perceptually discriminable colors. Studying color generalization is therefore a way to understand how birds take account of suprathreshold stimulus(More)
All seals and cetaceans have lost at least one of two ancestral cone classes and should therefore be colour-blind. Nevertheless, earlier studies showed that these marine mammals can discriminate colours and a colour vision mechanism has been proposed which contrasts signals from cones and rods. However, these earlier studies underestimated the brightness(More)
  • 1