Learn More
Kinesin-1 is a molecular motor protein that transports cargo along microtubules. Inside cells, the vast majority of kinesin-1 is regulated to conserve ATP and to ensure its proper intracellular distribution and coordination with other molecular motors. Regulated kinesin-1 folds in half at a hinge in its coiled-coil stalk. Interactions between coiled-coil(More)
Transient kinetic methods were used to study interactions between actin, MgADP, and smooth muscle (chicken gizzard) myosin subfragment 1 (smS1). The equilibrium dissociation constant (Kd) of actin for smS1 was 3.5 nM, tighter than that of skeletal S1 (skS1). Actin binding to smS1 was weakened 5-fold by saturation with ADP compared to 30-60-fold for skS1.(More)
To understand the domain requirements of phosphorylation-dependent regulation, we prepared three recombinant constructs of nonmuscle heavy meromyosin IIB containing 1) two complete heads, 2) one complete head and one head lacking the motor domain, and 3) one complete head and one head lacking both motor and regulatory domains. Steady-state ATPase(More)
Recent structural evidence (Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and Milligan, R. A. (1993) Science 261, 58-65) suggests that the two heads of skeletal muscle myosin interact when the protein is bound to filamentous actin. Direct chemical cross-linking experiments show that the two heads of smooth muscle myosin(More)
In striated muscle, calcium binding to the thin filament (TF) regulatory complex activates actin-myosin ATPase activity, and actin-myosin kinetics in turn regulates TF activation. However, a quantitative description of the effects of actin-myosin kinetics on the calcium sensitivity (pCa50) and cooperativity (nH) of TF activation is lacking. With the(More)
It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley's 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol(More)
Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent(More)
Activation of thin filaments in striated muscle occurs when tropomyosin exposes myosin binding sites on actin either through calcium-troponin (Ca-Tn) binding or by actin-myosin (A-M) strong binding. However, the extent to which these binding events contributes to thin filament activation remains unclear. Here we propose a simple analytical model in which(More)
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of(More)
To determine the mechanism by which sucrose slows in vitro actin sliding velocities, V, we used stopped flow kinetics and a single molecule binding assay, SiMBA. We observed that in the absence of ATP, sucrose (880mM) slowed the rate of actin-myosin (A-M) strong binding by 71±8% with a smaller inhibitory effect observed on spontaneous rigor dissociation(More)
  • 1