Christine Ortiz

Learn More
In this study, we have measured the nanoscale compressive interactions between opposing aggrecan macromolecules in near-physiological conditions, in order to elucidate the molecular origins of tissue-level cartilage biomechanical behavior. Aggrecan molecules from fetal bovine epiphyseal cartilage were chemically end-grafted to planar substrates, standard(More)
Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present(More)
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as(More)
Here, we investigate the ultrastructural origins of the strength of bone, which is critical for proper physiological function. A combination of dual nanoindentation, three-dimensional elastic-plastic finite element analysis using a Mohr-Coulomb cohesive-frictional strength criterion, and angle of repose measurements was employed. Our results suggest that(More)
Concrete, bone and shale have one thing in common: their loadbearing mineral phase is a hydrated nanocomposite. Yet the link between material genesis, microstructure, and mechanical performance for these materials is still an enigma that has deceived many decoding attempts. In this article, we advance statistical indentation analysis techniques that make it(More)
Nanomechanical heterogeneity is expected to influence elasticity, damage, fracture and remodelling of bone. Here, the spatial distribution of nanomechanical properties of bone is quantified at the length scale of individual collagen fibrils. Our results show elaborate patterns of stiffness ranging from approximately 2 to 30 GPa, which do not correlate(More)
In this paper, a multitechnique experimental and numerical modeling methodology was used to show that mineral content had a significant effect on both nanomechanical properties and ultrastructural deformation mechanisms of samples derived from adult bovine tibial bone. Partial and complete demineralization was carried out using phosphoric and(More)
In this study, the net intermolecular interaction force between a chondroitin sulfate glycosaminoglycan (GAG)-functionalized probe tip and an opposing GAG-functionalized planar substrate was measured as a function of probe tip-substrate separation distance in aqueous electrolyte solutions using the technique of high resolution force spectroscopy. A range of(More)
A common feature of the outer layer of protective biological exoskeletons is structural anisotropy. Here, we directly quantify the mechanical anisotropy and fracture of an individual material layer of a hydroxyapatite-based nanocomposite exoskeleton, the outmost ganoine of Polypterus senegalus scale. Uniaxial compression was conducted on cylindrical(More)
OBJECTIVE To demonstrate that training ensures correct administration of oral misoprostol by auxiliary midwives for prevention of postpartum hemorrhage (PPH) among women giving birth at the community level in Senegal. METHODS A 6-day training program for auxiliary midwives and supervisors, including 1 day of PPH prevention training and a practicum of 10(More)