Learn More
A characteristic usually attributed to declarative memory is that what is learned is accessible to awareness. Recently, the relationship between awareness and declarative (hippocampus-dependent) memory has been questioned on the basis of findings from transitive inference tasks. In transitive inference, participants are first trained on overlapping pairs of(More)
The initial learning and subsequent behavioral expression of fear are often viewed as independent processes with potentially unique neural substrates. Laboratory animal studies of Pavlovian fear conditioning suggest that the amygdala is important for both forming stimulus associations and for subsequently expressing learned behavioral responses. In the(More)
Previous functional magnetic resonance imaging (fMRI) studies have characterized brain systems involved in conditional response acquisition during Pavlovian fear conditioning. However, the functional neuroanatomy underlying the extinction of human conditional fear remains largely undetermined. The present study used fMRI to examine brain activity during(More)
Although laboratory animal studies have shown that the amygdala plays multiple roles in conditional fear, less is known about the human amygdala. Human subjects were trained in a Pavlovian fear conditioning paradigm during functional magnetic resonance imaging (fMRI). Brain activity maps correlated with reference waveforms representing the temporal pattern(More)
Declarative memory for rapidly learned, novel associations is thought to depend on structures in the medial temporal lobe (MTL), whereas associations learned more gradually can sometimes be supported by nondeclarative memory and by structures outside the MTL. A recent study suggested that even rapidly learned associations can be supported by structures(More)
Previous functional magnetic resonance imaging (fMRI) studies with human subjects have explored the neural substrates involved in forming associations in Pavlovian fear conditioning. Most of these studies used delay procedures, in which the conditioned stimulus (CS) and unconditioned stimulus (UCS) coterminate. Less is known about brain regions that support(More)
fMRI was used to study human brain activity during Pavlovian fear conditioning. Subjects were exposed to lights that either signaled painful electrical stimulation (CS+), or that did not serve as a warning signal (CS-). Unique patterns of activation developed within anterior cingulate and visual cortices as learning progressed. Training with the CS+(More)
We investigated the relationship between experience-dependent eye movements, hippocampus-dependent memory, and aware memory. We measured eye movements in young adults, older adults, and memory-impaired patients with damage to the medial temporal lobe as they viewed 120 novel scenes and 120 previously viewed scenes. Participants indicated if each scene was(More)
We studied item and source memory with fMRI in healthy volunteers and carried out a parallel study in memory-impaired patients. In experiment 1, volunteers studied a list of words in the scanner and later took an item memory test and a source memory test. Brain activity in the hippocampal region, perirhinal cortex, and parahippocampal cortex was associated(More)
There has been debate about whether differential delay eyeblink conditioning can be acquired without awareness of the stimulus contingencies. In 4 experiments, the authors reexamined this question. Older participants were tested with a tone and white noise (Experiment 1) or with 2 tones (Experiment 2). In addition, younger participants were tested with 2(More)