Learn More
A characteristic usually attributed to declarative memory is that what is learned is accessible to awareness. Recently, the relationship between awareness and declarative (hippocampus-dependent) memory has been questioned on the basis of findings from transitive inference tasks. In transitive inference, participants are first trained on overlapping pairs of(More)
Although laboratory animal studies have shown that the amygdala plays multiple roles in conditional fear, less is known about the human amygdala. Human subjects were trained in a Pavlovian fear conditioning paradigm during functional magnetic resonance imaging (fMRI). Brain activity maps correlated with reference waveforms representing the temporal pattern(More)
Previous functional magnetic resonance imaging (fMRI) studies have characterized brain systems involved in conditional response acquisition during Pavlovian fear conditioning. However, the functional neuroanatomy underlying the extinction of human conditional fear remains largely undetermined. The present study used fMRI to examine brain activity during(More)
The initial learning and subsequent behavioral expression of fear are often viewed as independent processes with potentially unique neural substrates. Laboratory animal studies of Pavlovian fear conditioning suggest that the amygdala is important for both forming stimulus associations and for subsequently expressing learned behavioral responses. In the(More)
The molecular mechanisms by which mesenchymal cells differentiate into chondrocytes are still poorly understood. We have used the gene for a chondrocyte marker, the proalpha1(II) collagen gene (Col2a1), as a model to delineate a minimal sequence needed for chondrocyte expression and identify chondrocyte-specific proteins binding to this sequence. We(More)
Declarative memory for rapidly learned, novel associations is thought to depend on structures in the medial temporal lobe (MTL), whereas associations learned more gradually can sometimes be supported by nondeclarative memory and by structures outside the MTL. A recent study suggested that even rapidly learned associations can be supported by structures(More)
Previous functional magnetic resonance imaging (fMRI) studies with human subjects have explored the neural substrates involved in forming associations in Pavlovian fear conditioning. Most of these studies used delay procedures, in which the conditioned stimulus (CS) and unconditioned stimulus (UCS) coterminate. Less is known about brain regions that support(More)
Type II collagen is a major chondrocyte-specific component of the cartilage extracellular matrix and it represents a typical differentiation marker of mature chondrocytes. In order to delineate cis-acting elements of the mouse pro alpha 1(II) collagen gene that control chondrocyte-specific expression in intact mouse embryos, we generated transgenic mice(More)
fMRI was used to study human brain activity during Pavlovian fear conditioning. Subjects were exposed to lights that either signaled painful electrical stimulation (CS+), or that did not serve as a warning signal (CS-). Unique patterns of activation developed within anterior cingulate and visual cortices as learning progressed. Training with the CS+(More)
Based on our previous transgenic mice results, which strongly suggested that separate cell-specific cis-acting elements of the mouse pro-alpha 1(I) collagen promoter control the activity of the gene in different type I collagen-producing cells, we attempted to delineate a short segment in this promoter that could direct high-level expression selectively in(More)