Learn More
Functional and phylogenetic diversity are increasingly quantified in various fields of ecology and conservation biology. The need to maintain diversity turnover among sites, so-called beta-diversity, has also been raised in theoretical and applied ecology. In this study, we propose the first comprehensive framework for the large-scale mapping of taxonomic,(More)
Forestry plantations represent about 4 % of the global land cover and demand for wood is steadily increasing worldwide. Impacts of forest plantations on biodiversity are controversial; forest plantations could positively influence biodiversity by producing a buffer zone between native forests and agriculture, while replacement of native forests with(More)
Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity(More)
The Mediterranean Sea (0.82% of the global oceanic surface) holds 4%-18% of all known marine species (~17,000), with a high proportion of endemism [1, 2]. This exceptional biodiversity is under severe threats [1] but benefits from a system of 100 marine protected areas (MPAs). Surprisingly, the spatial congruence of fish biodiversity hot spots with this MPA(More)
Ecological theory suggests that spatial distribution of biodiversity is strongly driven by community assembly processes. Thus the study of diversity patterns combined with null model testing has become increasingly common to infer assembly processes from observed distributions of diversity indices. However, results in both empirical and simulation studies(More)
The Mediterranean Sea is a highly diverse, highly studied, and highly impacted biogeographic region, yet no phylogenetic reconstruction of fish diversity in this area has been published to date. Here, we infer the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank. We assembled a DNA(More)
Many species are shifting their distributions due to climate change and to increasing international trade that allows dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture. Species distribution modelling may help to predict potential changes in pest distributions. However, these(More)
Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in(More)
The aim of this study was to characterize environmental differentiation of lineages within Rhabdomys and provide hypotheses regarding potential areas of contact between them in the Southern African subregion, including the Republic of South Africa, Lesotho, and Namibia. Records of Rhabdomys taxa across the study region were compiled and georeferenced from(More)
  • 1