Learn More
We report the cDNA sequence and localization of a protein first identified by actin filament chromatography of Drosophila embryo extracts as ABP8 (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). The cDNA encodes a 1201-amino acid protein which we name anillin. Anillin migrates at 190 kD on SDS-PAGE. Anillin is expressed(More)
Septin proteins are necessary for cytokinesis in budding yeast and Drosophila and are thought to be the subunits of the yeast neck filaments. To test whether septins actually form filaments, an immunoaffinity approach was used to isolate a septin complex from Drosophila embryos. The purified complex is comprised of the three previously identified septin(More)
The septins are a family of proteins required for cytokinesis in a number of eukaryotic cell types. In budding yeast, these proteins are thought to be the structural components of a filament system present at the mother-bud neck, called the neck filaments. In this study, we report the isolation of a protein complex containing the yeast septins Cdc3p,(More)
We have characterized a human homologue of anillin, a Drosophila actin binding protein. Like Drosophila anillin, the human protein localizes to the nucleus during interphase, the cortex following nuclear envelope breakdown, and the cleavage furrow during cytokinesis. Anillin also localizes to ectopic cleavage furrows generated between two spindles in fused(More)
Septins are polymerizing GTPases required for cytokinesis and cortical organization. The principles by which they are targeted to, and assemble at, specific cell regions are unknown. We show that septins in mammalian cells switch between a linear organization along actin bundles and cytoplasmic rings, approximately 0.6 microm in diameter. A recombinant(More)
We studied cyclic reorganizations of filamentous actin, myosin II and microtubules in syncytial Drosophila blastoderms using drug treatments, time-lapse movies and laser scanning confocal microscopy of fixed stained embryos (including multiprobe three-dimensional reconstructions). Our observations imply interactions between microtubules and the actomyosin(More)
Drosophila cellularization and animal cell cytokinesis rely on the coordinated functions of the microfilament and microtubule cytoskeletal systems. To identify new proteins involved in cellularization and cytokinesis, we have conducted a biochemical screen for microfilament/microtubule-associated proteins (MMAPs). 17 MMAPs were identified; seven have been(More)
We demonstrate that the contractile ring protein anillin interacts directly with nonmuscle myosin II and that this interaction is regulated by myosin light chain phosphorylation. We show that despite their interaction, anillin and myosin II are independently targeted to the contractile ring. Depletion of anillin in Drosophila or human cultured cells results(More)
By using F-actin affinity chromatography columns to select proteins solely by their ability to bind to actin filaments, we have identified and partially purified greater than 40 proteins from early Drosophila embryos. These proteins represent approximately 0.5% of the total protein present in soluble cell extracts, and 2 mg are obtained by chromatography of(More)
During cytokinesis, a specialized set of proteins is recruited to the equatorial region between spindle poles by microtubules and actin filaments, enabling furrow assembly and ingression before cell division. We investigate the mechanisms underlying regional specialization of the cytoskeleton in HeLa cells undergoing drug-synchronized monopolar cytokinesis.(More)