Christine M. Federovitch

Learn More
The endoplasmic reticulum (ER) is an extremely plastic and dynamic organelle. Its size and shape can undergo drastic changes to meet changing demands for ER-related functions, or as a response to drugs or pathogens. Because of the ER's key functions in protein and lipid synthesis, this organelle is a hotbed of detailed molecular analysis.
The unfolded protein response (UPR) pathway helps cells cope with endoplasmic reticulum (ER) stress by activating genes that increase the ER's functional capabilities. We have identified a novel role for the UPR pathway in facilitating budding yeast cytokinesis. Although other cell cycle events are unaffected by conditions that disrupt ER function,(More)
The endoplasmic reticulum (ER) is highly plastic, and increased expression of distinct single ER-resident membrane proteins, such as HMG-CoA reductase (HMGR), can induce a dramatic restructuring of ER membranes into highly organized arrays. Studies on the ER-remodeling behavior of the two yeast HMGR isozymes, Hmg1p and Hmg2p, suggest that they could be(More)
  • 1