Christine Le Péron

Learn More
Processes that regulate gene transcription are directly under the influence of the genome organization. The epigenome contains additional information that is not brought by DNA sequence, and generates spatial and functional constraints that complement genetic instructions. DNA methylation on CpGs constitutes an epigenetic mark generally correlated with(More)
The expression of two human estrogen receptor-alpha (hERalpha) isoforms has been characterized within estrogen receptor-alpha-positive breast cancer cell lines such as MCF7: the full-length hERalpha66 and the N terminally deleted hERalpha46, which is devoid of activation function (AF)-1. Although hERalpha66 is known to mediate the mitogenic effects that(More)
Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely(More)
Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional(More)
HSF2 is an enigmatic member of the heat shock factor family, identified in the homeotherm classes of birds and mammals. We report the characterization of HSF2 from an evolutionary ancient vertebrate, the fish rainbow trout (rtHSF2). rtHSF2 appears closely related to its mammalian counterparts at structural and functional levels. The conservation of the(More)
  • 1