Christine Labrugère

Learn More
Hybrid materials combining polyethylene terephthalate and different types of cells (endothelial and osteoblastic cells) have been developed thanks to the covalent grafting of different densities of RGD containing peptides onto the polymer surface. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH(More)
The improvement of commonly used Gd3+ -based MRI agents requires the design of new systems with optimized in vivo efficacy, pharmacokinetic properties, and specificity. To design these contrast agents, two parameters are usually considered: increasing the number of coordinated water molecules or increasing the rotational correlation time by increasing(More)
In order to improve long-term patency of vascular grafts, the promising concept of endothelial cell seeding is actually under investigation. Our laboratory tested a polyester coated with albumin and chitosan which permits a rapid colonization by human umbilical vein endothelial cells (HUVEC) and it seems relevant to test in vitro the expression of adhesive(More)
The aim of this study was to evaluate the impact of different densities on MC3T3 cells attachment onto Poly (ethylene terephthalate) (PET) film surfaces. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions onto PET surface, coupling agent grafting and finally immobilization of peptides. The(More)
The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as(More)
High efficiency and selectivity, easy magnetic recovery and recycling, and use of air as the oxidant at atmospheric pressure are major objectives for oxidation catalysis in terms of sustainable and green processes. A tris(triazolyl) ligand, so far only used in copper-catalyzed alkyne azide cycloadditions, was found to be extremely efficient in SiO2 /γ-Fe2(More)
In the present paper, specific interest has been devoted to the design of new hybrid materials associating Ti-6Al-4V alloy and osteoprogenitor cells through the grafting of two RGD containing peptides displaying a different conformation (linear RGD and cyclo-DfKRG) onto titanium surface. Biomimetic modification was performed by means of a three-step(More)
Ceramics possess osteoconductive properties but exhibit no intrinsic osteoinductive capacity. Consequently, they are unable to induce new bone formation in extra osseous sites. In order to develop bone substitutes with osteogenic properties, one promising approach consists of creating hybrid materials by associating in vitro biomaterials with(More)
In this study, we report a rapid sonochemical synthesis of monodisperse nonaggregated Fe(3)O(4)@SiO(2) magnetic nanoparticles (NPs). We found that coprecipitation of Fe(II) and Fe(III) in aqueous solutions under the effect of power ultrasound yields smaller Fe(3)O(4) NPs with a narrow size distribution (4-8 nm) compared to the silent reaction. Moreover, the(More)
The attachment of human umbilical vein endothelial cells (HUVECs) on substrates that had been covalently grafted with the cell adhesion peptides Arg-Gly-Asp (RGD) was investigated. This approach was used to provide substrates that are adhesive to cells even in the absence of serum proteins and to cells that have had no prior treatment of the surface with(More)