Christine Kranz

Learn More
Focused ion beam/scanning electron microscopy (FIB/SEM) tomography is a novel powerful approach for three-dimensional (3D) imaging of biological samples. Thereby, a sample is repeatedly milled with the focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in(More)
Mechanical forces affect biological systems in their natural environment in a widespread manner. Mechanical stress may either stimulate cells or even induce pathological processes. Cells sensing mechanical stress usually respond to such stressors with proliferation or differentiation. Hence, for in vitro studies, the ability to impose a controlled(More)
Biofilms are complex microbial communities with important biological functions including enhanced resistance against external factors like antimicrobial agents. The formation of a biofilm is known to be strongly dependent on substrate properties including hydrophobicity/hydrophilicity, structure, and roughness. The adsorption of (macro)molecules on the(More)
Scanning probe techniques enable direct imaging of morphology changes associated with cellular processes at life specimen. Here, glutaraldehyde-fixed and living alveolar type II (ATII) cells were investigated by atomic force microscopy (AFM), and the obtained topographical data were correlated with results obtained by scanning electron microscopy (SEM) and(More)
We present a novel approach to develop and process a microelectrode integrated in a standard AFM tip. The presented fabrication process allows the integration of an electroactive area at an exactly defined distance above of the end of a scanning probe tip and the subsequent remodeling and sharpening of the original AFM tip using a focused ion beam (FIB)(More)
The physiological application of amperometric adenosine triphosphate (ATP) microbiosensors for characterizing the stimulus-response at rat carotid bodies superfused with high potassium concentrations, during normoxic hypercapnia, and during hypoxia is demonstrated using the peripheral arterial chemoreceptors in the carotid body of rats as a model system.(More)
The volume phase transition (VPT) behavior of individual thermally responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) hydrogel microparticles was studied by in-situ dynamic mode atomic force microscopy (AFM) and force spectroscopy during heating and cooling cycles. Hydrogel samples were prepared by electrostatic immobilization of(More)
With the integration of submicro- and nanoelectrodes into atomic force microscopy (AFM) probes using microfabrication techniques, an elegant approach combining scanning electrochemical microscopy (SECM) with AFM has recently been introduced. Simultaneous contact mode imaging of a micropatterned sample with immobilized enzyme spots and imaging of enzyme(More)
Pinhole-free insulation of micro- and nanoelectrodes is the key to successful microelectrochemical experiments performed in vivo or in combination with scanning probe experiments. A novel insulation technique based on fluorocarbon insulation layers deposited from pentafluoroethane (PFE, CF3CHF2) plasmas is presented as a promising electrical insulation(More)