Christine Janz

Learn More
Our previous recombination and biochemical analyses have led to the hypothesis that the tumor suppressor p53 monitors homologous recombination, a function which was previously attributed to the mismatch repair protein MSH2. Here, we show that a certain fraction of p53 is concentrated within discrete nuclear foci of cells synchronized in G1 phase, a pattern(More)
Heteroduplex joints represent intermediates of Rad51-dependent recombination processes, which are recognized by p53 with extremely high affinities, in a manner independent of the DNA sequence content. To determine the structural elements required for complex formation, we monitored DNA-binding by protection against restriction endonuclease cleavage. We show(More)
Our previous work (Dudenhöffer et al., 1999) unveiled a link between the capacity of p53 to regulate homologous recombination processes and to specifically bind to heteroduplex junction DNAs. Here, we show that p53 participates in ternary complex formation after preassembly of nucleoproteins, consisting of the human recombinase hRad51 and junction DNA. The(More)
In mammalian cells homologous recombination is stimulated, when the replication fork stalls at DNA breaks or unrepaired lesions. The tumor suppressor p53 downregulates homologous recombination independently of its transcriptional transactivation function and has been linked to enzymes of DNA recombination and replication. To study recombination with respect(More)
Phosphorylation of p53 on serine 15 by ATM or ATR is a frequent modification and initiates a cascade of post-translational modifications. To identify possible mechanisms that modulate p53 functions in recombination surveillance, we compared the nuclear localization of p53 phosphorylated on serine 15 (p53pSer15) and the key enzymes of homologous(More)
  • 1