Learn More
Rapid identification of Candida species has become more important because of an increase in infections caused by species other than Candida albicans, including species innately resistant to azole antifungal drugs. We previously developed a PCR assay with an enzyme immunoassay (EIA) format to detect amplicons from the five most common Candida species by(More)
Widespread use of fluconazole for the prophylaxis and treatment of candidiasis has led to a reduction in the number of cases of candidemia caused by Candida albicans but has also resulted in the emergence of candidemias caused by innately fluconazole-resistant, non-C. albicans Candida species. Given the fulminant and rapidly fatal outcome of acute(More)
Candida dubliniensis is a recently described opportunistic pathogen which shares many phenotypic characteristics with Candida albicans but which has been reported to rapidly acquire resistance to azole antifungal drugs. Therefore, differentiation of C. dubliniensis from C. albicans becomes important to better understand the clinical significance and(More)
We used fungus-specific PCR primers and species-specific DNA probes to detect up to three Candida species in a single reaction tube by exploiting the 5' to 3' exonuclease activity of Taq DNA polymerase. Probes to the internal transcribed spacer region of the rRNA gene were labeled at the 5' end with one of three fluorescent reporter dyes,(More)
MIC end point determination for the most commonly prescribed azole antifungal drug, fluconazole, can be complicated by "trailing" growth of the organism during susceptibility testing by the National Committee for Clinical Laboratory Standards approved M27-A broth macrodilution method and its modified broth microdilution format. To address this problem, we(More)
We developed a PCR-based assay to differentiate medically important species of Aspergillus from one another and from other opportunistic molds and yeasts by employing universal, fungus-specific primers and DNA probes in an enzyme immunoassay format (PCR-EIA). Oligonucleotide probes, directed to the internal transcribed spacer 2 region of ribosomal DNA from(More)
Molecular approaches are now being developed to provide a more rapid and objective identification of fungi compared to traditional phenotypic methods. Ribosomal targets, especially the large-subunit RNA gene (D1-D2 region) and internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions), have shown particular promise for the molecular identification of some(More)
MIC end points for the most commonly prescribed azole antifungal drug, fluconazole, can be difficult to determine because its fungistatic nature can lead to excessive "trailing" of growth during susceptibility testing by National Committee for Clinical Laboratory Standards broth macrodilution and microdilution methods. To overcome this ambiguity, and(More)
We developed a microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species. Nucleotide sequences derived from the internal transcribed spacer (ITS) region of fungal rDNA were used to develop species-specific oligonucleotide probes for Candida albicans, C. tropicalis, C. parapsilosis, and C. krusei. No cross-hybridization was(More)
We examined the production of secreted aspartyl proteinase (Sap), a putative virulence factor of Candida albicans, by a series of 17 isolates representing a single strain obtained from the oral cavity of an AIDS patient before and after the development of clinical and in vitro resistance to fluconazole. Isolates were grown in Sap-inducing yeast carbon(More)