Christine Erbe

Learn More
Critical habitats of at-risk populations of northeast Pacific "resident" killer whales can be heavily trafficked by large ships, with transits occurring on average once every hour in busy shipping lanes. We modeled behavioral responses of killer whales to ship transits during 35 "natural experiments" as a dose-response function of estimated received noise(More)
The inshore, continental shelf waters of British Columbia (BC), Canada are busy with ship traffic. South coast waters are heavily trafficked by ships using the ports of Vancouver and Seattle. North coast waters are less busy, but expected to get busier based on proposals for container port and liquefied natural gas development and expansion. Abundance(More)
Anthropogenic noise impacts marine mammals in a variety of ways. In order to estimate over which ranges this happens, we first need to understand the propagation of noise through the ocean away from the noise source, and, second, understand the relationship between received noise levels and impact thresholds. A software package combining both aspects is(More)
Coastal areas, and thus coastal species, are at increasing risk from human activities. Sections of the coastline of Western Australia are undergoing intense coastal development to fulfil commercial, industrial, and recreational requirements. Multiple populations of bottlenose dolphins (Tursiops aduncus) occur around this coastline; however, small community(More)
A core task in endangered species conservation is identifying important habitats and managing human activities to mitigate threats. Many marine organisms, from invertebrates to fish to marine mammals, use acoustic cues to find food, avoid predators, choose mates, and navigate. Ocean noise can affect animal behavior and disrupt trophic linkages. Substantial(More)
A software model estimating zones of impact on marine mammals around man-made noise [C. Erbe and D. M. Farmer, J. Acoust. Soc. Am. 108, 1327-1331 (2000)] is applied to the case of icebreakers affecting beluga whales in the Beaufort Sea. Two types of noise emitted by the Canadian Coast Guard icebreaker Henry Larsen are analyzed: bubbler system noise and(More)
This article examines the masking of a complex beluga vocalization by natural and anthropogenic noise. The call consisted of six 150 ms pulses exhibiting spectral peaks between 800 Hz and 8 kHz. Comparing the spectra and spectrograms of the call and noises at detection threshold showed that the animal did not hear the entire call at threshold. It only heard(More)
Including ocean noise in marine spatial planning requires predictions of noise levels on large spatiotemporal scales. Based on a simple sound transmission model and ship track data (Automatic Identification System, AIS), cumulative underwater acoustic energy from shipping was mapped throughout 2008 in the west Canadian Exclusive Economic Zone, showing high(More)
This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was(More)