Christine Dottermusch-Heidel

Learn More
Myoblast fusion is a key process in multinucleated muscle formation. Prior to fusion, myoblasts recognize and adhere to each other with the aid of cell-adhesion proteins integrated into the membrane. Their intracellular domains participate in signal transduction by binding to cytoplasmic proteins. Here we identified the calcium-dependent cell-adhesion(More)
In both mammalian and Drosophila spermatids, the completely histone-based chromatin structure is reorganized to a largely protamine-based structure. During this histone-to-protamine switch, transition proteins are expressed, for example TNP1 and TNP2 in mammals and Tpl94D in Drosophila. Recently, we demonstrated that in Drosophila spermatids, H3K79(More)
During spermiogenesis, haploid spermatids undergo extensive chromatin remodeling events in which histones are successively replaced by more basic protamines to generate highly compacted chromatin. Here we show for the first time that H3K79 methylation is a conserved feature preceding the histone-to-protamine transition in Drosophila melanogaster and rat.(More)
Differentiation from a haploid round spermatid to a highly streamlined, motile sperm requires temporal and spatial regulation of the expression of numerous proteins. One form of regulation is the storage of translationally repressed mRNAs. In Drosophila spermatocytes, the transcription of many of these translationally delayed mRNAs during spermiogenesis is(More)
The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell-cell contact. At the ultrastructural level, these events are reflected by(More)
  • 1