Christine A. Hiller

Learn More
Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones,(More)
The development of biased (functionally selective) ligands provides a formidable challenge in medicinal chemistry. In an effort to learn to design functionally selective molecular tools for the highly therapeutically relevant dopamine D2 receptor, we synthesized a collection of agonists based on structurally distinct head groups derived from canonical or(More)
G-protein-coupled receptors (GPCRs) represent the largest family of membrane proteins involved in cellular signal transduction and are activated by various different ligand types including photons, peptides, proteins, but also small molecules like biogenic amines. Therefore, GPCRs are involved in diverse physiological processes and provide valuable drug(More)
Dopaminergics of types 1 and 2 incorporating a conjugated enyne as an atypical catechol-simulating moiety were synthesized in enantiomerically pure form and investigated for their metabolic stability. Radioligand binding studies indicated high affinity to D2-like receptors. The test compounds were evaluated for their ability to differentially activate(More)
G protein-coupled receptors are involved in numerous physiological processes and provide attractive drug targets for diverse diseases. However, the development of selective, efficacious drugs targeting this family of membrane proteins remains challenging due to multidimensional selectivity profiles of GPCR-agonists and antagonists. Selective GPCR ligands(More)
  • 1