Christina Schueler

Learn More
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, "RCaMPs," engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give(More)
Carbonic anhydrases (CAs) catalyze the reversible hydration of CO(2) to HCO(3)(-) and H(+). The rate-limiting step in this reaction is the shuttle of protons between the catalytic center of the enzyme and the bulk solution. In carbonic anhydrase II (CAII), the fastest and most wide-spread isoform, this H(+) shuttle is facilitated by the side chain of His64,(More)
Transport metabolons have been discussed between carbonic anhydrase II (CAII) and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1), to determine their catalytic activity and their ability to enhance NBCe1 transport(More)
RGS proteins (regulators of G protein signalling) negatively regulate G protein function as GTPase-activating proteins (GAP) for G protein α-subunits. The existence of mRNAs of different size for some of the RGS proteins, e.g. RGS3, suggests that these proteins may exist in isoforms due to alternative splicing. We therefore investigated RGS3 mRNA and(More)
The ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the(More)
Cardiac arrhythmias are often associated with mutations in ion channels or other proteins. To enable drug development for distinct arrhythmias, model systems are required that allow implementing patient-specific mutations. We assessed a muscular pump in Caenorhabditis elegans. The pharynx utilizes homologues of most of the ion channels, pumps and(More)
  • 1