Christina Söderman

Learn More
The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine(More)
The aim of this study was to evaluate the use of a recently developed method of retrospectively estimating the patient dose-area product (DAP) of a chest tomosynthesis examination, performed using VolumeRAD, in thoracic spine tomosynthesis and to determine the necessary field-size correction factor. Digital imaging and communications in medicine (DICOM)(More)
PURPOSE To investigate the potential benefit of increasing the dose per projection image in chest tomosynthesis, performed at the current standard dose level, by reducing the angular range covered or the projection image density and to evaluate the influence of the tube voltage on the image quality. METHODS An anthropomorphic chest phantom was imaged(More)
PURPOSE The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. METHODS DICOM(More)
Digital tomosynthesis (DTS) has been used in chest imaging as a low radiation dose alternative to computed tomography (CT). Traditional DTS shows limitations in the spatial resolution in the out-of-plane dimension. As a first indication of whether a dual-plane dual-view (DPDV) DTS data acquisition can yield a fair resolution in all three spatial dimensions,(More)
RATIONALE AND OBJECTIVES To investigate the accuracy and precision of pulmonary nodule size measurements on chest tomosynthesis images. MATERIALS AND METHODS Artificial ellipsoid-shaped nodules with known sizes were inserted in clinical chest tomosynthesis images. The volume of the nodules corresponded to that of a sphere with a diameter of 4.0, 8.0, or(More)
The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose(More)
Background A method of simulating pulmonary nodules in tomosynthesis images has previously been developed and evaluated. An unknown feature of a rounding function included in the computer code was later found to introduce an artifact, affecting simulated nodules in low-signal regions of the images. The computer code has now been corrected. Purpose To(More)
The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of(More)
  • 1