Learn More
Pheromones are very important in animal communication. To learn more about the molecular basis of pheromone action, we studied the effects of a potent honey bee pheromone on brain gene expression. Brood pheromone (BP) caused changes in the expression of hundreds of genes in the bee brain in a manner consistent with its known effects on behavioral(More)
BACKGROUND The molecular mechanisms underlying the post-mating behavioral and physiological transitions undergone by females have not been explored in great detail. Honey bees represent an excellent model system in which to address these questions because they exhibit a range of "mating states," with two extremes (virgins and egg-laying, mated queens) that(More)
In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010(More)
We tested the hypothesis that queen mandibular pheromone (QMP) causes changes in gene expression in the brain of the adult worker honey bee, and that these changes can be correlated to the downstream behavioral responses induced by QMP. In support of the first hypothesis, cage experiments revealed that QMP transiently regulated expression of several hundred(More)
BACKGROUND The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and(More)
Spectacular progress in molecular biology, genome-sequencing projects and genomics makes this an appropriate time to attempt a comprehensive understanding of the molecular basis of social life. Promising results have already been obtained in identifying genes that influence animal social behaviour and genes that are implicated in social evolution. These(More)
In social groups, dominant individuals may socially inhibit reproduction of subordinates using aggressive interactions or, in the case of highly eusocial insects, pheromonal communication. It has been hypothesized these two modes of reproductive inhibition utilize conserved pathways. Here, we use a comparative framework to investigate the chemical and(More)
Pheromones cause dramatic changes in behavior and physiology, and are critical for honey bee colony organization. Queen mandibular pheromone (QMP) regulates multiple behaviors in worker bees (Slessor et al. in J Chem Ecol 31(11):2731-2745, 2005). We also identified genes whose brain expression levels were altered by exposure to QMP (Grozinger et al. in Proc(More)
Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social(More)
The genetic and physiological pathways regulating behavior in solitary species are hypothesized to have been co-opted to regulate social behavior in social species. One classic example is the interaction between vitellogenin (an egg-yolk and storage protein) and juvenile hormone, which are positively correlated in most insect species but have modified(More)