Christina Kägi

Learn More
The formation of gametes is a key step in the life cycle of any sexually reproducing organism. In flowering plants, gametes develop in haploid structures termed gametophytes that comprise a few cells. The female gametophyte forms gametic cells and flanking accessory cells. During a screen for regulators of egg-cell fate, we isolated three mutants, lachesis(More)
In flowering plants, the egg and sperm cells form within haploid gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg cell and the central cell, which are flanked by five accessory cells. Both gametic and accessory cells are vital for fertilization; however, the mechanisms that underlie the formation of accessory versus(More)
Plant germ cells develop in specialized haploid structures, termed gametophytes. The female gametophyte patterns of flowering plants are diverse, with often unknown adaptive value. Here we present the Arabidopsis fiona mutant, which forms a female gametophyte that is structurally and functionally reminiscent of a phylogenetic distant female gametophyte. The(More)
In contrast to animals, gametes in plants form a separate haploid generation, the gametophyte. The female gametophyte of flowering plants consists of just four different cell types that play distinct roles in the reproductive process. Differentiation of the distinct cell fates is tightly controlled and appears to follow regional cues that are arranged along(More)
In plants, gametes, along with accessory cells, are formed by the haploid gametophytes through a series of mitotic divisions, cell specification and differentiation events. How the cells in the female gametophyte of flowering plants differentiate into gametes (the egg and central cell) and accessory cells remains largely unknown. In a screen for mutations(More)
In flowering plants, gametes are formed in specialized haploid structures, termed gametophytes. The female gametophyte is a few-celled structure that integrates such diverse functions as pollen tube attraction, sperm cell release, gamete fusion and seed initiation. These processes are realized by distinct cell types, which ensure reproductive success in a(More)
A common denominator of sexual reproduction in many eukaryotic species is the exposure of an egg to excess sperm to maximize the chances of reproductive success. To avoid potential harmful or deleterious consequences of supernumerary sperm fusion to a single female gamete (polyspermy), many eukaryotes, including plants, have evolved barriers preventing(More)
  • 1