Christina J. Newcomb

Learn More
Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture,(More)
Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role during bone regeneration and repair. In the extracellular environment, sulfated polysaccharides anchored covalently to glycoproteins such as syndecan and also non-covalently to fibronectin fibers have been shown to bind BMP-2 through a heparin-binding domain(More)
Peptide self-assembly has been shown to be a useful tool for the preparation of bioactive nanostructures, and recent work has demonstrated their potential as therapies for regenerative medicine. In principle, one route to make these nanostructures more biomimetic would be to incorporate in their molecular design the capacity for biological sensing. We(More)
There is great demand for the development of novel therapies for ischemic cardiovascular disease, a leading cause of morbidity and mortality worldwide. We report here on the development of a completely synthetic cell-free therapy based on peptide amphiphile nanostructures designed to mimic the activity of VEGF, one of the most potent angiogenic signaling(More)
Self-assembling peptide materials have been used extensively to mimic natural extracellular matrices (ECMs) by presenting bioactive epitopes on a synthetic matrix. Although this approach can facilitate a desired response from cells grown in the matrix, it lacks the capacity for spatial or temporal regulation of the presented signals. We describe here a(More)
A large variety of functional self-assembled supramolecular nanostructures have been reported over recent decades. The experimental approach to these systems initially focused on the design of molecules with specific interactions that lead to discrete geometric structures, and more recently on the kinetics and mechanistic pathways of self-assembly. However,(More)
The regenerative capability of enamel, the hardest tissue in the vertebrate body, is fundamentally limited due to cell apoptosis following maturation of the tissue. Synthetic strategies to promote enamel formation have the potential to repair damage, increase the longevity of teeth and improve the understanding of the events leading to tissue formation.(More)
The mechanical properties of the extracellular matrix (ECM) are known to influence neuronal differentiation and maturation, though the mechanism by which neuronal cells respond to these biophysical cues is not completely understood. Here we design ECM mimics using self-assembled peptide nanofibers, in which fiber rigidity is tailored by supramolecular(More)
We report here crystallization at long range in networks of like-charge supramolecular peptide filaments mediated by repulsive forces. The crystallization is spontaneous beyond a given concentration of the molecules that form the filaments but can be triggered by x-rays at lower concentrations. The crystalline domains formed by x-ray irradiation, with(More)