Christina Enroth-Cugell

Learn More
1. Spatial summation within cat retinal receptive fields was studied by recording from optic-tract fibres the responses of ganglion cells to grating patterns whose luminance perpendicular to the bars varied sinusoidally about the mean level. 2. Summation over the receptive fields of some cells (X-cells) was found to be approximately linear, while for other(More)
The contrast sensitivity to gratings drifting at 2.0 Hz has been measured for X and Y type retinal ganglion cells, and these data have been used to characterize the sizes and peak sensitivities of centers and surrounds. The assumption of Gaussian sensitivity distributions is adequate for both types of cells, but allows a better description of X than of Y(More)
The spatio-temporal characteristics of cat retinal ganglion cells showing linear summation have been studied by measuring both magnitude and phase of the responses of these cells to drifting or sinusoidally contrast-modulated sinusoidal grating patterns. It has been demonstrated not only that X cells behave approximately linearly when responding with(More)
Visual stimulation outside the classical receptive field can have pronounced effects on cat retinal ganglion cells. We characterized the effects of such stimulation by varying the contrast, spatial frequency, temporal frequency, and spatial extent of remote drifting sinusoidal gratings. We found that the mean firing rate of some X-cells and most Y-cells(More)
Spatiotemporal frequency responses were measured at different levels of light adaptation for cat X and Y retinal ganglion cells. Stationary sinusoidal luminance gratings whose contrast was modulated sinusoidally in time or drifting gratings were used as stimuli. Under photopic illumination, when the spatial frequency was held constant at or above its(More)
It has been suggested for a number of years that ganglion cells inform the rest of the brain about contrast in the retinal image. The purpose of the work undertaken here was to demonstrate this fact explicitly. Extracellular recordings were made from X- and Y-cell axons of the optic tracts of anesthetized cats. Responses of these cells to gratings that were(More)
1. Y-type ganglion cells in the cat's retina were stimulated with bars of light and grating patterns at photopic luminances. Stimuli were stationary, and luminance at each point was varied sinusoidally in time at 2 Hz. Impulse rates were recorded from single cells. 2. When the stimulus was a narrow bar of light, the impulse rate approached a sinusoidal(More)
1. Grating patterns were used to obtain a quantitative description of cells in the visual cortex of the cat whose response amplitude depended critically upon the orientation of the moving grating.2. In all such cells the impulse frequency was found to decrease linearly with angle on either side of an optimum angle (the preferred angle) until the response(More)
1. The impulse/quantum (I/Q) ratio was measured as a function of background illumination for rod-dominated, pure central, linear square-wave responses of retinal ganglion cells in the cat.2. The I/Q ratio was constant at low backgrounds (dark adapted state) and inversely proportional to the 0.9 power of the background at high backgrounds (the light adapted(More)
1. Action potentials were recorded from single fibres in the optic tract of anaesthetized cats. 2. A sectored disk or 'windmill', concentric with the receptive field, was rotated about its centre to cause local changes in illumination throughout the receptive field without changing the total amount of light falling on the receptive field centre or surround.(More)