Learn More
Stable HIV-1 replication requires the DNA repair of the integration locus catalyzed by cellular factors. The human RAD51 (hRAD51) protein plays a major role in homologous recombination (HR) DNA repair and was previously shown to interact with HIV-1 integrase (IN) and inhibit its activity. Here we determined the molecular mechanism of inhibition of IN. Our(More)
We report herein the synthesis of a series of fifteen 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives. Alkyl and arylalkyl groups were introduced on position 4 of the basis scaffold. All the compounds presented poor inhibitory properties against HIV-1 reverse transcriptase ribonuclease H (RNase H). Four compounds inhibited HIV-1 integrase at a low(More)
The DNA polymerase of the human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is a target widely used to inhibit HIV-1 replication. In contrast, very few inhibitors of the RNase H activity associated with RT have been described, despite the crucial role played by this activity in viral proliferation. DNA ligands with a high affinity for the(More)
Integration of human immunodeficiency virus type 1 (HIV-1) proviral DNA in the nuclear genome is catalyzed by the retroviral integrase (IN). In addition to IN, viral and cellular proteins associated in the high-molecular-weight preintegration complex have been suggested to be involved in this process. In an attempt to define host factors interacting with(More)
The oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site(More)
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) mediates the insertion of viral DNA into the human genome. In addition to IN, cellular and viral proteins are associated to proviral DNA in the so-called preintegration complex (PIC). We previously reported that the expression of HIV-1 IN in yeast leads to the emergence of a lethal phenotype.(More)
Intracellular transport of karyophilic cargos comprises translocation to the nuclear envelope and subsequent nuclear import. Small cargos such as isolated proteins can reach the nuclear envelope by diffusion but movement of larger structures depends on active translocation, typically using microtubules. Centripetal transport ends at the perinuclear(More)
Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the(More)
The integration of proviral DNA into the genome of the host cell is an essential step in the replication of retroviruses. This reaction is catalyzed by a viral-encoded enzyme, the integrase (IN). We have previously shown that human immunodeficiency virus type 1 (HIV-1) IN causes a lethal effect when expressed in yeast cells. This system, called yeast lethal(More)
HIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the(More)