Christina A. Castellani

Learn More
Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic(More)
Genetic discoveries on Schizophrenia remain challenging. Traditional approaches have provided clues, but no genes. Novel theories that must account for extensive heterogeneity, including high discordance of monozygotic (MZD) twins, are needed. To this end, the extensive repeats of the human genome may provide the predisposition for DNA replication errors(More)
AIM Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. MATERIALS & METHODS In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using(More)
The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an(More)
The mechanism of action of olanzapine in treating schizophrenia is not clear. This research reports the effects of a therapeutic equivalent treatment of olanzapine on DNA methylation in a rat model in vivo. Genome-wide DNA methylation was assessed using a MeDIP-chip analysis. All methylated DNA immunoprecipitation (MeDIP), sample labelling, hybridization(More)
Despite their singular origin, monozygotic twin pairs often display discordance for complex disorders including schizophrenia. It is a common (1%) and often familial disease with a discordance rate of ~50% in monozygotic twins. This high discordance is often explained by the role of yet unknown environmental, random, and epigenetic factors. The involvement(More)
We have evaluated copy number variants (CNVs) in six monozygotic twin pairs discordant for schizophrenia. The data from Affymetrix® Human SNP 6.0 arrays™ were analyzed using Affymetrix® Genotyping Console™, Partek® Genomics Suite™, PennCNV, and Golden Helix SVS™. This yielded both program-specific and overlapping results. Only CNVs called by Affymetrix(More)
BACKGROUND The dopamine (DA) hypothesis of schizophrenia proposes the mental illness is caused by excessive transmission of dopamine in selected brain regions. Multiple lines of evidence, including blockage of dopamine receptors by antipsychotic drugs that are used to treat schizophrenia, support the hypothesis. However, the dopamine D2 receptor (DRD2)(More)
Schizophrenia is a complex mental disorder with high heritability (80%), extensive genetic heterogeneity, environmental contributions and only 50% concordance in discordant monozygotic (MZ) twins. Discordant MZ twins provide an exceptional opportunity to assess patient specific genome-wide genetic and epigenetic changes that may account for the disease(More)
Evidence for involvement of DNA methylation in psychosis forms the focus of this perspective. Of interest are results from two independent sets of experiments including rats treated with antipsychotic drugs and monozygotic twins discordant for schizophrenia. The results show that DNA methylation is increased in rats treated with antipsychotic drugs,(More)