Learn More
In order to identify X-chromosomal genes required inDrosophila for early patterning and morphogenesis, we examined embryos hemizygous for EMS-induced lethal mutations to determine which of those mutations cause gross morphological defects. Embryos from 2711 lethal lines, corresponding to 3255 lethal point mutations were studied. Only 21% caused death during(More)
Zebrafish embryos and larvae have stage-specific patterns of motility or locomotion. Two embryonic structures accomplish this behavior: the central nervous system (CNS) and skeletal muscles. To identify genes that are functionally involved in mediating and controlling different patterns of embryonic and larval motility, we included a simple touch response(More)
In systematic searches for embryonic lethal mutants of Drosophila melanogaster we have identified 15 loci which when mutated alter the segmental pattern of the larva. These loci probably represent the majority of such genes in Drosophila. The phenotypes of the mutant embryos indicate that the process of segmentation involves at least three levels of spatial(More)
Embryos mutant for the T gene, in mice, make insufficient mesoderm and fail to develop a notochord. We report the cloning and sequencing of the T gene in the zebrafish (Brachydanio rerio) and show the nuclear localization of the protein product. Both RNA and protein are found in cells of the germ ring, including enveloping layer cells, prior to and during(More)
Tissues of the dorsal midline of vertebrate embryos, such as notochord and floor plate, have been implicated in inductive interactions that pattern the neural tube and somites. In our screen for embryonic visible mutations in the zebrafish we found 113 mutations in more than 27 genes with altered body shape, often with additional defects in CNS development.(More)
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human(More)
Somitogenesis is the basis of segmentation of the mesoderm in the trunk and tail of vertebrate embryos. Two groups of mutants with defects in this patterning process have been isolated in our screen for zygotic mutations affecting the embryonic development of the zebrafish (Danio rerio). In mutants of the first group, boundaries between individual somites(More)
A significant proportion of neurons in the brain undergo programmed cell death. In order to prevent the diffusion of damaging degradation products, dying neurons are quickly digested by microglia. Despite the importance of microglia in several neuronal pathologies, the mechanism underlying their degradation of neurons remains elusive. Here, we exploit a(More)
We identified 6 genes that are essential for specifying ventral regions of the early zebrafish embryo. Mutations in these genes cause an expansion of structures normally derived from dorsal-lateral regions of the blastula at the expense of ventrally derived structures. A series of phenotypes of varied strengths is observed with different alleles of these(More)